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Section |. Nios Il Processor Design
/ANO 3 RYA g

This section provides information about the Nios® II processor.
This section includes the following chapters:

m Chapter 1, Introduction

m Chapter 2, Processor Architecture

m Chapter 3, Programming Model

m  Chapter 4, Instantiating the Nios II Processor in SOPC Builder
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1. Introduction
fA! IERA )

NII51001-10.0.0

Introduction

This handbook is the primary reference for the Nios® II family of embedded
processors. The handbook describes the Nios II processor from a high-level
conceptual description to the low-level details of implementation. The chapters in this
handbook define the Nios II processor architecture, the programming model, the
instruction set, and more.

“®.e This handbook is part of a larger collection of documents covering the Nios II

processor and its usage that you can find on the Literature: Nios II Processor page on
the Altera® website.

This handbook assumes you have a basic familiarity with embedded processor
concepts. You do not need to be familiar with any specific Altera technology or with
Altera development tools. This handbook intentionally minimizes discussion of
hardware implementation details of the processor system. That said, the Nios II
processors are designed for Altera FPGA devices, and so this handbook does describe
some FPGA implementation concepts. Your familiarity with FPGA technology
provides a deeper understanding of the engineering trade-offs related to the design
and implementation of the Nios II processor.

This Introduction chapter introduces the Altera Nios Il embedded processor family.
The chapter helps hardware and software engineers understand the similarities and
differences between the Nios II processor and traditional embedded processors. This
chapter contains the following sections:

m  “Nios II Processor System Basics”
m “Getting Started with the Nios II Processor” on page 1-2
m “Customizing Nios II Processor Designs” on page 1-3

m “Configurable Soft-Core Processor Concepts” on page 1-4
]

“OpenCore Plus Evaluation” on page 1-5

Nios Il Processor System Basics

The Nios II processor is a general-purpose RISC processor core, providing;:
m Full 32-bit instruction set, data path, and address space

m 32 general-purpose registers

m  Optional shadow register sets

m 32 interrupt sources

m External interrupt controller interface for more interrupt sources

m Single-instruction 32 x 32 multiply and divide producing a 32-bit result

m Dedicated instructions for computing 64-bit and 128-bit products of multiplication
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m Floating-point instructions for single-precision floating-point operations
m Single-instruction barrel shifter

m  Access to a variety of on-chip peripherals, and interfaces to off-chip memories and
peripherals

m Hardware-assisted debug module enabling processor start, stop, step, and trace
under control of the Nios II software development tools

m Optional memory management unit (MMU) to support operating systems that
require MMUs

m Optional memory protection unit (MPU)

m Software development environment based on the GNU C/C++ tool chain and the
Nios II Software Build Tools (SBT) for Eclipse

m Integration with Altera's SignalTap® Il Embedded Logic Analyzer, enabling
real-time analysis of instructions and data along with other signals in the FPGA
design

m Instruction set architecture (ISA) compatible across all Nios II processor systems
m Performance up to 250 DMIPS

A Nios II processor system is equivalent to a microcontroller or “computer on a chip”
that includes a processor and a combination of peripherals and memory on a single
chip. A Nios II processor system consists of a Nios II processor core, a set of on-chip
peripherals, on-chip memory, and interfaces to off-chip memory, all implemented on a
single Altera device. Like a microcontroller family, all Nios II processor systems use a
consistent instruction set and programming model.

Getting Started with the Nios Il Processor

Getting started with the Nios II processor is similar to any other microcontroller
family. The easiest way to start designing effectively is to purchase a development kit
from Altera that includes a ready-made evaluation board and the Nios II Embedded
Design Suite (EDS) containing all the software development tools necessary to write
Nios II software.

The Nios II EDS includes the following two closely-related software development tool
flows:

m The Nios II SBT
m The Nios II SBT for Eclipse

Both tools flows are based on the GNU C/C++ compiler. The Nios II SBT for Eclipse
provides a familiar and established environment for software development. Using the
Nios II SBT for Eclipse, you can immediately begin developing and simulating Nios II
software applications.

The Nios II SBT also provides a command line interface.

Using the Nios II hardware reference designs included in an Altera development kit,
you can prototype an application running on a board before building a custom
hardware platform. Figure 1-1 shows an example of a Nios II processor reference
design available in an Altera Nios II development kit.
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Figure 1-1. Example of a Nios Il Processor System
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If the prototype system adequately meets design requirements using an
Altera-provided reference design, you can copy the reference design and use it as is in
the final hardware platform. Otherwise, you can customize the Nios II processor
system until it meets cost or performance requirements.

Customizing Nios Il Processor Designs

In practice, most FPGA designs implement some extra logic in addition to the
processor system. Altera FPGAs provide flexibility to add features and enhance
performance of the Nios II processor system. Conversely, you can eliminate
unnecessary processor features and peripherals to fit the design in a smaller,
lower-cost device.

Because the pins and logic resources in Altera devices are programmable, many
customizations are possible:

B You can rearrange the pins on the chip to simplify the board design. For example,
you can move address and data pins for external SDRAM memory to any side of
the chip to shorten board traces.

B You can use extra pins and logic resources on the chip for functions unrelated to
the processor. Extra resources can provide a few extra gates and registers as glue
logic for the board design; or extra resources can implement entire systems. For
example, a Nios II processor system consumes only 5% of a large Altera FPGA,
leaving the rest of the chip’s resources available to implement other functions.

® You can use extra pins and logic on the chip to implement additional peripherals
for the Nios II processor system. Altera offers a library of peripherals that easily
connect to Nios II processor systems.
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Configurable Soft-Core Processor Concepts

This section introduces Nios II concepts that are unique or different from other
discrete microcontrollers. The concepts described in this section provide a foundation
for understanding the rest of the features discussed in this document.

Configurable Soft-Core Processor

The Nios II processor is a configurable soft-core processor, as opposed to a fixed,
off-the-shelf microcontroller. In this context, configurable means that you can add or
remove features on a system-by-system basis to meet performance or price goals.
Soft-core means the processor core is not fixed in silicon and can be targeted to any
Altera FPGA family.

Configurability does not require you to create a new Nios II processor configuration
for every new design. Altera provides ready-made Nios II system designs that you
can use as is. If these designs meet your system requirements, there is no need to
configure the design further. In addition, software designers can use the Nios II
instruction set simulator to begin writing and debugging Nios II applications before
the final hardware configuration is determined.

Flexible Peripheral Set and Address Map

A flexible peripheral set is one of the most notable differences between Nios II
processor systems and fixed microcontrollers. Because the Nios II processor is
implemented in programmable logic, you can easily build made-to-order Nios II
processor systems with the exact peripheral set required for the target applications.

A corollary of flexible peripherals is a flexible address map. Altera provides software
constructs to access memory and peripherals generically, independently of address
location. Therefore, the flexible peripheral set and address map does not affect
application developers.

There are two broad classes of peripherals: standard peripherals and custom
peripherals.

Standard Peripherals

Altera provides a set of peripherals commonly used in microcontrollers, such as
timers, serial communication interfaces, general-purpose I/O, SDRAM controllers,
and other memory interfaces. The list of available peripherals continues to grow as
Altera and third-party vendors release new peripherals.

<o For details on the Altera-provided cores, refer to the Embedded Peripherals IP User
Guide.

Custom Peripherals

You can also create custom peripherals and integrate them in Nios II processor
systems. For performance-critical systems that spend most CPU cycles executing a
specific section of code, it is a common technique to create a custom peripheral that
implements the same function in hardware. This approach offers a double
performance benefit: the hardware implementation is faster than software; and the
processor is free to perform other functions in parallel while the custom peripheral
operates on data.
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““.e For details on creating custom peripherals, refer to the SOPC Builder Components

chapter in volume 4 of the Quartus II Handbook.

Custom Instructions

Like custom peripherals, custom instructions allow you to increase system
performance by augmenting the processor with custom hardware. The custom logic is
integrated into the Nios II processor’s arithmetic logic unit (ALU). Similar to native
Nios II instructions, custom instruction logic can take values from up to two source
registers and optionally write back a result to a destination register.

Because the processor is implemented on reprogrammable Altera FPGAs, software
and hardware engineers can work together to iteratively optimize the hardware and
test the results of software running on hardware.

From the software perspective, custom instructions appear as machine-generated
assembly macros or C functions, so programmers do not need to understand
assembly language to use custom instructions.

Automated System Generation

Altera’s SOPC Builder design tool fully automates the process of configuring
processor features and generating a hardware design that you program in an FPGA.
The SOPC Builder graphical user interface (GUI) enables you to configure Nios II
processor systems with any number of peripherals and memory interfaces. You can
create entire processor systems without performing any schematic or HDL design
entry. SOPC Builder can also import HDL design files, providing an easy mechanism
to integrate custom logic in a Nios II processor system.

After system generation, you can download the design onto a board, and debug
software executing on the board. To the software developer, the processor architecture
of the design is set. Software development proceeds in the same manner as for
traditional, nonconfigurable processors.

OpenCore Plus Evaluation

You can evaluate the Nios II processor without a license. With Altera's free OpenCore
Plus evaluation feature, you can perform the following actions:

m Simulate the behavior of a Nios II processor within your system

m Verify the functionality of your design, as well as evaluate its size and speed
quickly and easily

m  Generate time-limited device programming files for designs that include Nios II
processors

m Program a device and verify your design in hardware

You only need to purchase a license for the Nios II processor when you are completely
satisfied with its functionality and performance, and want to take your design to

production.
“®.e For more information about OpenCore Plus, refer to AN 320: OpenCore Plus Evaluation
of Megafunctions.
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Referenced Documents

This chapter references the following documents:

m Embedded Peripherals IP User Guide

m  SOPC Builder Components chapter in volume 4 of the Quartus II Handbook
m AN 320: OpenCore Plus Evaluation of Megafunctions

m Literature: Nios II Processor page on the Altera website

Document Revision History

Table 1-1 shows the revision history for this document.

Tahle 1-1. Document Revision History (Part 1 of 2)

Date & Document

Version Changes Made Summary of Changes
July 2010 Maintenance release. —
v10.0.0
November 2009 m Added external interrupt controller interface information. Added shadow register sets
v9.1.0 m Added shadow register set information. and external interrupt

controller support
March 2009 Maintenance release. —
v9.0.0
November 2008 Maintenance release. —
v8.1.0
May 2008 Added MMU and MPU to bullet list of features. Added MMU and MPU.
v8.0.0
October 2007 Added OpenCore Plus section. —
v7.2.0
May 2007 m Added table of contents to Introduction section. —
v7.1.0 m Added Referenced Documents section.
March 2007 Maintenance release. —
v7.0.0
November 2006 Maintenance release. —
v6.1.0
May 2006 m Added single precision floating-point and integration with —
v6.0.0 SignalTape Il logic analyzer to features list.
m Updated performance to 250 DMIPS.

October 2005 Maintenance release. —
v5.1.0
May 2005 Maintenance release. —
v5.0.0
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Table 1-1. Document Revision History (Part 2 of 2)

Date & Document
Version Changes Made Summary of Changes
September 2004 Updates for Nios 11 1.01 release. —
vl
May 2004 Initial release. —
v1.0
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Introduction

This chapter describes the hardware structure of the Nios® II processor, including a
discussion of all the functional units of the Nios II architecture and the fundamentals
of the Nios II processor hardware implementation. This chapter contains the
following sections:

m “Processor Implementation” on page 2-2

m “Register File” on page 2-3

m “Arithmetic Logic Unit” on page 2—4

m “Reset and Debug Signals” on page 2-7

m “Exception and Interrupt Controllers” on page 2-8
m “Memory and I/O Organization” on page 2-10

m “JTAG Debug Module” on page 2-17

The Nios II architecture describes an instruction set architecture (ISA). The ISA in turn
necessitates a set of functional units that implement the instructions. A Nios II
processor core is a hardware design that implements the Nios II instruction set and
supports the functional units described in this document. The processor core does not
include peripherals or the connection logic to the outside world. It includes only the
circuits required to implement the Nios II architecture.

Figure 2-1 shows a block diagram of the Nios II processor core.
The Nios II architecture defines the following functional units:
m Register file

m  Arithmetic logic unit (ALU)

m Interface to custom instruction logic

m Exception controller

Internal or external interrupt controller
Instruction bus

Data bus

Memory management unit (MMU)
Memory protection unit (MPU)

Instruction and data cache memories

Tightly-coupled memory interfaces for instructions and data
m JTAG debug module

The following sections discuss hardware implementation details related to each
functional unit.
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Figure 2-1. Nios Il Processor Core Block Diagram
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Processor Implementation

The functional units of the Nios II architecture form the foundation for the Nios II
instruction set. However, this does not indicate that any unit is implemented in
hardware. The Nios II architecture describes an instruction set, not a particular
hardware implementation. A functional unit can be implemented in hardware,
emulated in software, or omitted entirely.

A Nios Il implementation is a set of design choices embodied by a particular Nios II
processor core. All implementations support the instruction set defined in the
Instruction Set Reference chapter of the Nios II Processor Reference Handbook. Each
implementation achieves specific objectives, such as smaller core size or higher
performance. This allows the Nios II architecture to adapt to the needs of different
target applications.
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Register File

Implementation variables generally fit one of three trade-off patterns: more or less of a
feature; inclusion or exclusion of a feature; hardware implementation or software
emulation of a feature. An example of each trade-off follows:

m  More or less of a feature—For example, to fine-tune performance, you can increase
or decrease the amount of instruction cache memory. A larger cache increases
execution speed of large programs, while a smaller cache conserves on-chip
memory resources.

m Inclusion or exclusion of a feature—For example, to reduce cost, you can choose to
omit the JTAG debug module. This decision conserves on-chip logic and memory
resources, but it eliminates the ability to use a software debugger to debug
applications.

m Hardware implementation or software emulation—For example, in control
applications that rarely perform complex arithmetic, you can choose for the
division instruction to be emulated in software. Removing the divide hardware
conserves on-chip resources but increases the execution time of division
operations.

For details of which Nios II cores supports what features, refer to the Nios II Core

Implementation Details chapter of the Nios II Processor Reference Handbook. For complete
details of user-selectable parameters for the Nios II processor, refer to the Instantiating
the Nios 1I Processor in SOPC Builder chapter of the Nios II Processor Reference Handbook.

The Nios II architecture supports a flat register file, consisting of thirty two 32-bit
general-purpose integer registers, and up to thirty two 32-bit control registers. The
architecture supports supervisor and user modes that allow system code to protect
the control registers from errant applications.

The Nios II processor can optionally have one or more shadow register sets. A
shadow register set is a complete set of Nios II general-purpose registers. When
shadow register sets are implemented, the CRS field of the st at us register indicates
which register set is currently in use. An instruction access to a general-purpose
register uses whichever register set is active.

A typical use of shadow register sets is to accelerate context switching. When shadow
register sets are implemented, the Nios II processor has two special instructions,
rdprs and wr pr s, for moving data between register sets. Shadow register sets are
typically manipulated by an operating system kernel, and are transparent to
application code. A Nios II processor can have up to 63 shadow register sets.

For details about shadow register set implementation and usage, refer to “Registers”
and “Exception Processing” in the Programming Model chapter of the Nios II Processor
Reference Handbook. For details about the r dpr s and wr pr s instructions, refer to the
Instruction Set Reference chapter of the Nios II Processor Reference Handbook.

The Nios II architecture allows for the future addition of floating-point registers.
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Arithmetic Logic Unit

The Nios II ALU operates on data stored in general-purpose registers. ALU
operations take one or two inputs from registers, and store a result back in a register.
The ALU supports the data operations shown in Table 2-1.

Table 2-1. Operations Supported by the Nios Il ALU

Category Details
Arithmetic The ALU supports addition, subtraction, multiplication, and division on signed and unsigned operands.
Relational The ALU supports the equal, not-equal, greater-than-or-equal, and less-than relational operations (==,
I=>=, <) on signed and unsigned operands.
Logical The ALU supports AND, OR, NOR, and XOR logical operations.

Shift and Rotate | The ALU supports shift and rotate operations, and can shift/rotate data by 0 to 31 bit positions per
instruction. The ALU supports arithmetic shift right and logical shift right/left. The ALU supports rotate
left/right.

To implement any other operation, software computes the result by performing a
combination of the fundamental operations in Table 2-1.

Unimplemented Instructions

Some Nios II processor core implementations do not provide hardware to support the
entire Nios II instruction set. In such a core, instructions without hardware support
are known as unimplemented instructions.

The processor generates an exception whenever it issues an unimplemented
instruction so your exception handler can call a routine that emulates the operation in
software. Therefore, unimplemented instructions do not affect the programmer’s
view of the processor.
“.e Foralist of potential unimplemented instructions, refer to the Programming Model
chapter of the Nios II Processor Reference Handbook.

Custom Instructions

The Nios II architecture supports user-defined custom instructions. The Nios II ALU
connects directly to custom instruction logic, enabling you to implement in hardware
operations that are accessed and used exactly like native instructions.

. & For further information, refer to the Nios I Custom Instruction User Guide.

Floating-Point Instructions

The Nios II architecture supports single precision floating-point instructions as
specified by the IEEE Std 754-1985. The basic set of floating-point custom instructions
includes single precision floating-point addition, subtraction, and multiplication.
Floating-point division is available as an extension to the basic instruction set. These
floating-point instructions are implemented as custom instructions. Table 2-2
provides a detailed description of the conformance to IEEE 754-1985.
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Table 2-2. Hardware Conformance with IEEE 754-1985 Floating-Point Standard

Feature Implementation
Operations (7) Addition Implemented
Subtraction Implemented
Multiplication Implemented
Division Optional
Precision Single Implemented
Double Not implemented. Double precision operations are implemented in
software.

Exception conditions

Invalid operation
Division by zero

Result is Not a Number (NaN)
Result is zinfinity

Overflow Result is +infinity
Inexact Result is a normal number
Underflow Result is +0

Rounding Modes Round to nearest Implemented

Round toward zero
Round toward +infinity

Not implemented
Not implemented
Not implemented

Round toward —infinity

NaN Quiet Implemented
Signaling Not implemented
Subnormal Subnormal operands are treated as zero. The floating-point custom
(denormalized) instructions do not generate subnormal numbers.
numbers

Software exceptions

Not implemented. IEEE 754-1985 exception conditions are detected
and handled as shown elsewhere in this table.

Status flags

Not implemented. IEEE 754-1985 exception conditions are detected
and handled as shown elsewhere in this table.

Notes to Table 2-2:

(1) The Nios Il Embedded Design Suite (EDS) provides software implementations of primitive floating-point operations other than addition,
subtraction, multiplication, and division. This includes operations such as floating-point conversions and comparisons. The software
implementations of these primitives are 100% compliant with IEEE 754-1985.

© July 2010 Altera Corporation

You can add floating-point custom instructions to any Nios II processor core using the
Nios II Processor MegaWizard™ interface. The floating-point division hardware
requires more resources than the other instructions. The MegaWizard interface allows
you to omit the floating-point division hardware for cases in which code running on
your hardware design does not make heavy use of floating-point division. When you
omit the floating-point divide instruction, the Nios II compiler implements
floating-point division in software.

To add floating-point custom instructions to your Nios II processor core, refer to
“Custom Instructions Page” in the Instantiating the Nios II Processor in SOPC Builder

chapter of the Nios II Processor Reference Handbook.

The Nios II floating-point custom instructions are based on the Altera® floating-point
megafunctions.
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For details on each individual floating-point megafunction, including acceleration
factors and device resource usage, refer to the megafunction user guides, available on
the IP and Megafunctions literature page on the Altera website.

The Nios II software development tools recognize C code that takes advantage of the
floating-point instructions present in the processor core. When the floating-point
custom instructions are present in your target hardware, the Nios II compiler
compiles your code to use the custom instructions for floating-point operations,
including addition, subtraction, multiplication, division and the newlib math library.

Software Development Considerations

The best choice for your hardware design depends on a balance among floating-point
usage, hardware resource usage, and performance. While the floating-point custom
instructions speed up floating-point arithmetic, they substantially add to the size of
your hardware design. If resource usage is an issue, consider reworking your
algorithms to minimize floating-point arithmetic.

You can use #pr agma directives in your software to compare hardware and software
implementations of the floating-point instructions. The following #pr agma directives
instruct the Nios II compiler to ignore the floating-point instructions and generate

software implementations. The scope of these #pr agnma directives is the entire C file.

m #pragma no_cust om f adds—Forces software implementation of floating-point
add

m #pragma no_cust om f subs—Forces software implementation of
floating-point subtract

m #pragma no_cust om f nul s—Forces software implementation of
floating-point multiply

m #pragma no_cust om f di vs—Forces software implementation of
floating-point divide

The Nios Il instruction set simulator (ISS) does not support custom instructions. If you
need to run your software on the ISS, disable the floating-point custom instructions in
software with the #pr agna directives.

All the floating-point custom instructions are single-precision operations.
Double-precision floating-point operations are implemented in software.

When the floating-point custom instructions are not present, the Nios II compiler
treats floating-point constants as double-precision values. However, with the
floating-point custom instructions, the Nios II compiler treats floating-point constants
as single-precision numbers by default. This allows all floating-point expressions to
be evaluated in hardware, at a possible cost in precision.

If you do not wish floating-point constants to be cast down to single precision values,
append L to each constant value, to instruct the compiler to treat the constant as a
double-precision floating-point value. In this case, if an expression contains a
floating-point constant, each term in the expression is cast to double precision. As a
result, the expression is computed with software-implemented double-precision
arithmetic, at a possible cost in computation speed.
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Table 2-3 shows code examples using floating-point constants, indicating how each
computation is implemented.

Table 2-3. Floating-Point Constant Examples

Floating-Point
Custom Instructions
Example Code Present? Precision Implementation
b =ax 4.67 No Double Software
b =a x 4.67f No Single Software
b =a x 4.67L No Double Software
b =a x 4.67 Yes Single Hardware
b =a x 4.67f Yes Single Hardware
b =a x 4.67L Yes Double Software

Il With the GCC 4 compiler toolchain, precompiled libraries are compiled with
double-precision floating-point constants. The behavior of precompiled floating-point
library functions such as si n() and cos() is unaffected by the presence of the
floating-point custom instructions.

Reset and Debug Signals

The Nios II processor core supports several reset and signals, shown in Table 2—4.

Tahle 2-4. Nios Il Processor Debug and Reset Signals

Signal Name Type | Purpose
reset Reset | This is a global hardware reset signal that forces the processor core to reset
immediately.

cpu_resetrequest |Reset | Thisis an optional, local reset signal that causes the processor to reset without
affecting other components in the Nios Il system. The processor finishes executing any
instructions in the pipeline, and then enters the reset state. This process can take
several clock cycles, so be sure to continue asserting the cpu_r eset r equest
signal until the processor core asserts acpu_r eset t aken signal.

The processor core asserts acpu_r eset t aken signal for 1 cycle when the reset is
complete and then periodically if cpu_r eset r equest remains asserted. The
processor remains in the reset state for as long as cpu_r eset r equest is asserted.
While the processor is in the reset state, it periodically reads from the reset address. It
discards the result of the read, and remains in the reset state.

The processor does not respond to cpu_r eset r equest when the processor is
under the control of the JTAG debug module, that is, when the processor is paused.
The processor responds to the cpu_r eset r equest signal if the signal is asserted
when the JTAG debug module relinquishes control, both momentarily during each
single step as well as when you resume execution.

debugr eq Debug | This is an optional signal that temporarily suspends the processor for debugging
purposes. When you assert the signal, the processor pauses in the same manner as
when a breakpoint is encountered, transfers execution to the routine located at the
break address, and asserts a debugack signal. Asserting the debugr eq signal
when the processor is already paused has no effect.
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For more information on adding reset signals to the Nios II processor, refer to
“Advanced Features Page” in the Instantiating the Nios II Processor in SOPC Builder
chapter of the Nios II Processor Reference Handbook. For more information on the break
vector and adding debug signals to the Nios II processor, refer to “JTAG Debug
Module Page” in the Instantiating the Nios II Processor in SOPC Builder chapter of the
Nios II Processor Reference Handbook.

Exception and Interrupt Controllers

The Nios II processor includes hardware for handling exceptions, including hardware
interrupts. It also includes an optional external interrupt controller (EIC) interface.
The EIC interface enables you to speed up interrupt handling in a complex system by
adding a custom interrupt controller.

Exception Controller

The Nios II architecture provides a simple, nonvectored exception controller to handle
all exception types. Each exception, including internal hardware interrupts, causes the
processor to transfer execution to an exception address. An exception handler at this
address determines the cause of the exception and dispatches an appropriate
exception routine.

Exception addresses are specified in SOPC Builder at system generation time.

All exceptions are precise. Precise means that the processor has completed execution
of all instructions preceding the faulting instruction and not started execution of
instructions following the faulting instruction. Precise exceptions allow the processor
to resume program execution once the exception handler clears the exception.

External Interrupt Controller Interface

An EIC is typically used in conjunction with shadow register sets to provide
high-performance hardware interrupts. The Nios II processor connects to an EIC
through the EIC interface. When an EIC is present, the internal interrupt controller is
not implemented, and SOPC Builder connects interrupts to the EIC.

The EIC selects among active interrupts and presents one interrupt to the Nios II
processor, with interrupt handler address and register set selection information. The
interrupt selection algorithm is specific to the EIC implementation, and is typically
based on interrupt priorities. The Nios II processor does not depend on any specific
interrupt prioritization scheme in the EIC.

For every external interrupt, the EIC presents an interrupt level. The Nios II processor
uses the interrupt level in determining when to service the interrupt.

Any external interrupt can be configured as an NMI. NMIs are not masked by the
st at us. Pl Ebit, and have no interrupt level.

An EIC can be software-configurable.

When the EIC interface and shadow register sets are implemented on the Nios II core,
you must ensure that your software is built with the Nios II EDS version 9.0 or higher.
Earlier versions have an implementation of the er et instruction that is incompatible
with shadow register sets.
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“.e For atypical example of an EIC, refer to the Vectored Interrupt Controller chapter in the
Embedded Peripherals IP User Guide. For details about EIC usage, refer to “Exception
Processing” in the Programming Model chapter of the Nios II Processor Reference
Handbook.

Internal Interrupt Controller

The Nios II architecture supports 32 internal hardware interrupts. The processor core
has 32 level-sensitive interrupt request (IRQ) inputs, i r 0 through i r 31, providing
a unique input for each interrupt source. IRQ priority is determined by software. The
architecture supports nested interrupts.

The software can enable and disable any interrupt source individually through the

i enabl e control register, which contains an interrupt-enable bit for each of the IRQ
inputs. Software can enable and disable interrupts globally using the PIE bit of the
st at us control register. A hardware interrupt is generated if and only if all of the
following conditions are true:

m  The PIE bit of the st at us register is 1
®m An interrupt-request input, i r q<n>, is asserted

m  The corresponding bit  of the i enabl e register is 1

Interrupt Vector Custom Instruction

The Nios II processor core offers an interrupt vector custom instruction which
accelerates interrupt vector dispatch. Include this custom instruction to reduce your
program’s interrupt latency.

The interrupt vector custom instruction is based on a priority encoder with one input
for each interrupt connected to the Nios II processor. The cost of the interrupt vector
custom instruction depends on the number of interrupts connected to the Nios II
processor. The worst case is a system with 32 interrupts. In this case, the interrupt
vector custom instruction consumes about 50 logic elements (LEs).

If you have a large number of interrupts connected, adding the interrupt vector
custom instruction to your system might lower fy;sx.

«o For guidance in adding the interrupt vector custom instruction to the Nios II
processor, refer to the Instantiating the Nios Il Processor in SOPC Builder chapter of the
Nios II Processor Reference Handbook.

= The interrupt vector custom instruction is not compatible with the EIC interface. For

the Nios II/f core, the EIC interface with the Altera vectored interrupt controller

component provides superior performance.

Table 2-5 details the implementation of the interrupt vector custom instruction.
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Table 2-5. Interrupt Vector Custom Instruction
ALT_CI_EXCEPTION_VECTOR_N

Operation:

Assembler Syntax:
Example:

Description:

Usage:
Exceptions:
Instruction Type:
Instruction Fields:

if (i pendi ng ==0) | (est at us. Pl E==0)
then rC «—negative value
else rC <=8 x hit # of the least-significant 1 bit of the i pendi ng register (ct | 4)
custom ALT_Cl _EXCEPTION_VECTOR N, rC, r0, rO
custom ALT_CI _EXCEPTI ON_VECTOR_N, et, r0, rO
blt et, r0, not_irq

The interrupt vector custom instruction accelerates interrupt vector dispatch. This custom
instruction identifies the highest priority interrupt, generates the vector table offset, and stores
this offset to rC. The instruction generates a negative offset if there is no hardware interrupt
(that is, the exception is caused by a software condition, such as a trap).

The interrupt vector custom instruction is used exclusively by the exception handler.
None

R

G = Register index of operand rC

N = Value of ALT_CI_EXCEPTION_VECTOR_N

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o |

0 ‘ C ‘0‘0‘1‘ N 0x32

For an explanation of the instruction reference format, refer to the Instruction Set
Reference chapter of the Nios I Processor Reference Handbook.

Memory and 1/0 Organization

This section explains hardware implementation details of the Nios II memory and
1/0 organization. The discussion covers both general concepts true of all Nios II
processor systems, as well as features that might change from system to system.

The flexible nature of the Nios Il memory and I/O organization are the most notable
difference between Nios II processor systems and traditional microcontrollers.
Because Nios II processor systems are configurable, the memories and peripherals
vary from system to system. As a result, the memory and I/O organization varies
from system to system.

A Nios II core uses one or more of the following to provide memory and I/O access:

Instruction master port—An Avalon® Memory-Mapped (Avalon-MM) master port
that connects to instruction memory via system interconnect fabric

Instruction cache—Fast cache memory internal to the Nios II core

Data master port—An Avalon-MM master port that connects to data memory and
peripherals via system interconnect fabric

Data cache—Fast cache memory internal to the Nios II core

Tightly-coupled instruction or data memory port—Interface to fast on-chip
memory outside the Nios II core
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The Nios II architecture hides the hardware details from the programmer, so
programmers can develop Nios II applications without specific knowledge of the
hardware implementation.

For details that affect programming issues, refer to the Programming Model chapter of
the Nios 1I Processor Reference Handbook.

Figure 2-2 shows a diagram of the memory and I/O organization for a Nios II
processor core.

Figure 2-2. Nios Il Memory and 1/0 Organization
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Instruction and Data Buses

The Nios II architecture supports separate instruction and data buses, classifying it as
a Harvard architecture. Both the instruction and data buses are implemented as
Avalon-MM master ports that adhere to the Avalon-MM interface specification. The
data master port connects to both memory and peripheral components, while the
instruction master port connects only to memory components.
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Refer to the Avalon Interface Specifications for details of the Avalon-MM interface.

Memory and Peripheral Access

The Nios II architecture provides memory-mapped I/O access. Both data memory
and peripherals are mapped into the address space of the data master port. The
Nios II architecture is little endian. Words and halfwords are stored in memory with
the more-significant bytes at higher addresses.

The Nios II architecture does not specify anything about the existence of memory and
peripherals; the quantity, type, and connection of memory and peripherals are
system-dependent. Typically, Nios II processor systems contain a mix of fast on-chip
memory and slower off-chip memory. Peripherals typically reside on-chip, although
interfaces to off-chip peripherals also exist.

Instruction Master Port

The Nios II instruction bus is implemented as a 32-bit Avalon-MM master port. The
instruction master port performs a single function: it fetches instructions to be
executed by the processor. The instruction master port does not perform any write
operations.

The instruction master port is a pipelined Avalon-MM master port. Support for
pipelined Avalon-MM transfers minimizes the impact of synchronous memory with
pipeline latency and increases the overall fy,x of the system. The instruction master
port can issue successive read requests before data has returned from prior requests.
The Nios II processor can prefetch sequential instructions and perform branch
prediction to keep the instruction pipe as active as possible.

The instruction master port always retrieves 32 bits of data. The instruction master
port relies on dynamic bus-sizing logic contained in the system interconnect fabric. By
virtue of dynamic bus sizing, every instruction fetch returns a full instruction word,
regardless of the width of the target memory. Consequently, programs do not need to
be aware of the widths of memory in the Nios II processor system.

The Nios II architecture supports on-chip cache memory for improving average
instruction fetch performance when accessing slower memory. Refer to “Cache
Memory” on page 2-13 for details. The Nios II architecture supports tightly-coupled
memory, which provides guaranteed low-latency access to on-chip memory. Refer to
“Tightly-Coupled Memory” on page 2-15 for details.

Data Master Port

The Nios II data bus is implemented as a 32-bit Avalon-MM master port. The data
master port performs two functions:

B Read data from memory or a peripheral when the processor executes a load
instruction

m  Write data to memory or a peripheral when the processor executes a store
instruction
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Cache Memory

Byte-enable signals on the master port specify which of the four byte-lane(s) to write
during store operations. When the Nios II core is configured with a data cache line
size greater than four bytes, the data master port supports pipelined Avalon-MM
transfers. When the data cache line size is only four bytes, any memory pipeline
latency is perceived by the data master port as wait states. Load and store operations
can complete in a single clock cycle when the data master port is connected to
zero-wait-state memory.

The Nios II architecture supports on-chip cache memory for improving average data
transfer performance when accessing slower memory. Refer to “Cache Memory” on
page 2-13 for details. The Nios II architecture supports tightly-coupled memory,
which provides guaranteed low-latency access to on-chip memory. Refer to
“Tightly-Coupled Memory” on page 2-15 for details.

Shared Memory for Instructions and Data

Usually the instruction and data master ports share a single memory that contains
both instructions and data. While the processor core has separate instruction and data
buses, the overall Nios II processor system might present a single, shared
instruction/data bus to the outside world. The outside view of the Nios II processor
system depends on the memory and peripherals in the system and the structure of the
system interconnect fabric.

The data and instruction master ports never cause a gridlock condition in which one
port starves the other. For highest performance, assign the data master port higher
arbitration priority on any memory that is shared by both instruction and data master
ports.

The Nios II architecture supports cache memories on both the instruction master port
(instruction cache) and the data master port (data cache). Cache memory resides
on-chip as an integral part of the Nios II processor core. The cache memories can
improve the average memory access time for Nios II processor systems that use slow
off-chip memory such as SDRAM for program and data storage.

The instruction and data caches are enabled perpetually at run-time, but methods are
provided for software to bypass the data cache so that peripheral accesses do not
return cached data. Cache management and cache coherency are handled by software.
The Nios II instruction set provides instructions for cache management.

Configurable Cache Memory Options

The cache memories are optional. The need for higher memory performance (and by
association, the need for cache memory) is application dependent. Many applications
require the smallest possible processor core, and can trade-off performance for size.

A Nios II processor core might include one, both, or neither of the cache memories.
Furthermore, for cores that provide data and/or instruction cache, the sizes of the
cache memories are user-configurable. The inclusion of cache memory does not affect
the functionality of programs, but it does affect the speed at which the processor
fetches instructions and reads/writes data.
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Effective Use of Cache Memory

The effectiveness of cache memory to improve performance is based on the following
premises:

m Regular memory is located off-chip, and access time is long compared to on-chip
memory

m  The largest, performance-critical instruction loop is smaller than the instruction
cache

m  The largest block of performance-critical data is smaller than the data cache

Optimal cache configuration is application specific, although you can make decisions
that are effective across a range of applications. For example, if a Nios II processor
system includes only fast, on-chip memory (i.e., it never accesses slow, off-chip
memory), an instruction or data cache is unlikely to offer any performance gain. As
another example, if the critical loop of a program is 2 kilobytes (KB), but the size of the
instruction cache is 1 KB, an instruction cache does not improve execution speed. In
fact, an instruction cache may degrade performance in this situation.

If an application always requires certain data or sections of code to be located in cache
memory for performance reasons, the tightly-coupled memory feature might provide
a more appropriate solution. Refer to “Tightly-Coupled Memory” on page 2-15 for
details.

Cache Bypass Methods
The Nios II architecture provides the following methods for bypassing the data cache:

m I/0load and store instructions

m Bit-31 cache bypass

1/0 Load and Store Instructions Method

The load and store I/O instructions such as | di 0 and st i 0 bypass the data cache and
force an Avalon-MM data transfer to a specified address.

The Bit-31 Cache Bypass Method

The bit-31 cache bypass method on the data master port uses bit 31 of the address as a
tag that indicates whether the processor should transfer data to/from cache, or bypass
it. This is a convenience for software, which might need to cache certain addresses
and bypass others. Software can pass addresses as parameters between functions,
without having to specify any further information about whether the addressed data
is cached or not.

«® Todetermine which cores implement which cache bypass methods, refer to the Nios II
Core Implementation Details chapter of the Nios II Processor Reference Handbook.
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Tightly-Coupled Memory

Address Map

Tightly-coupled memory provides guaranteed low-latency memory access for
performance-critical applications. Compared to cache memory, tightly-coupled
memory provides the following benefits:

m Performance similar to cache memory

m Software can guarantee that performance-critical code or data is located in
tightly-coupled memory

m  No real-time caching overhead, such as loading, invalidating, or flushing memory

Physically, a tightly-coupled memory port is a separate master port on the Nios II
processor core, similar to the instruction or data master port. A Nios II core can have
zero, one, or multiple tightly-coupled memories. The Nios II architecture supports
tightly-coupled memories for both instruction and data access. Each tightly-coupled
memory port connects directly to exactly one memory with guaranteed low, fixed
latency. The memory is external to the Nios II core and is usually located on chip.

Accessing Tightly-Coupled Memory

Tightly-coupled memories occupy normal address space, the same as other memory
devices connected via system interconnect fabric. The address ranges for
tightly-coupled memories (if any) are determined at system generation time.

Software accesses tightly-coupled memory using regular load and store instructions.
From the software’s perspective, there is no difference accessing tightly-coupled
memory compared to other memory.

Effective Use of Tightly-Coupled Memory

A system can use tightly-coupled memory to achieve maximum performance for
accessing a specific section of code or data. For example, interrupt-intensive
applications can place exception handler code into a tightly-coupled memory to
minimize interrupt latency. Similarly, compute-intensive digital signal processing
(DSP) applications can place data buffers into tightly-coupled memory for the fastest
possible data access.

If the application’s memory requirements are small enough to fit entirely on chip, it is
possible to use tightly-coupled memory exclusively for code and data. Larger
applications must selectively choose what to include in tightly-coupled memory to
maximize the cost-performance trade-off.

The address map for memories and peripherals in a Nios II processor system is design
dependent. You specify the address map at system generation time.

There are three addresses that are part of the processor and deserve special mention:
m Reset address

m Exception address

m Break handler address

Programmers access memories and peripherals by using macros and drivers.
Therefore, the flexible address map does not affect application developers.
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Memory Management Unit

The optional Nios I MMU provides the following features and functionality:
m Virtual to physical address mapping
® Memory protection

m 32-bit virtual and physical addresses, mapping a 4-gigabyte (GB) virtual address
space into as much as 4 GB of physical memory

m 4 KB page and frame size
m Low 512 megabytes (MB) of physical address space available for direct access
m Hardware translation lookaside buffers (TLBs), accelerating address translation
m Separate TLBs for instruction and data accesses
m Read, write, and execute permissions controlled per page
m Default caching behavior controlled per page
m TLBs acting as n-way set-associative caches for software page tables
m TLB sizes and associativities configurable at system generation

m Format of page tables (or equivalent data structures) determined by system
software

m Replacement policy for TLB entries determined by system software

m  Write policy for TLB entries determined by system software

For further details on the MMU implementation, refer to the Programming Model
chapter of the Nios II Processor Reference Handbook.

You can optionally include the MMU when you instantiate the Nios II processor in
your Nios II hardware system. When present, the MMU is always enabled, and the
data and instruction caches are virtually-indexed, physically-tagged caches. Several
parameters are available, allowing you to optimize the MMU for your system needs.

For complete details of user-selectable parameters for the Nios Il MMU, refer to the
Instantiating the Nios 1I Processor in SOPC Builder chapter of the Nios II Processor
Reference Handbook.

The Nios I MMU is optional and mutually exclusive from the Nios Il MPU. Nios II
systems can include either an MMU or MPU, but cannot include both an MMU and
MPU on the same Nios II processor core.

Memory Protection Unit

The optional Nios II MPU provides the following features and functionality:
® Memory protection

m Up to 32 instruction regions and 32 data regions

m Variable instruction and data region sizes

B Amount of region memory defined by size or upper address limit
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m Read and write access permissions for data regions
m Execute access permissions for instruction regions

m  Opverlapping regions

For further details on the MPU implementation, refer to the Programming Model
chapter of the Nios II Processor Reference Handbook.

You can optionally include the MPU when you instantiate the Nios II processor in
your Nios II hardware system. When present, the MPU is always enabled. Several
parameters are available, allowing you to optimize the MPU for your system needs.

For complete details of user-selectable parameters for the Nios II MPU, refer to the
Instantiating the Nios II Processor in SOPC Builder chapter of the Nios II Processor
Reference Handbook.

The Nios Il MPU is optional and mutually exclusive from the Nios II MMU. Nios II
systems can include either an MPU or MMU, but cannot include both an MPU and
MMU on the same Nios II processor core.

JTAG Debug Module

The Nios II architecture supports a JTAG debug module that provides on-chip
emulation features to control the processor remotely from a host PC. PC-based
software debugging tools communicate with the JTAG debug module and provide
facilities, such as the following features:

m Downloading programs to memory
m Starting and stopping execution

m Setting breakpoints and watchpoints
®m  Analyzing registers and memory

m  Collecting real-time execution trace data
L=~ The Nios Il MMU does not support the JTAG debug module trace.

The debug module connects to the JTAG circuitry in an Altera FPGA. External
debugging probes can then access the processor via the standard JTAG interface on
the FPGA. On the processor side, the debug module connects to signals inside the
processor core. The debug module has nonmaskable control over the processor, and
does not require a software stub linked into the application under test. All system
resources visible to the processor in supervisor mode are available to the debug
module. For trace data collection, the debug module stores trace data in memory
either on-chip or in the debug probe.

The debug module gains control of the processor either by asserting a hardware break
signal, or by writing a break instruction into program memory to be executed. In both
cases, the processor transfers execution to the routine located at the break address.
The break address is specified in SOPC Builder at system generation time.
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Soft-core processors such as the Nios II processor offer unique debug capabilities
beyond the features of traditional, fixed processors. The soft-core nature of the Nios II
processor allows you to debug a system in development using a full-featured debug
core, and later remove the debug features to conserve logic resources. For the release
version of a product, the JTAG debug module functionality can be reduced, or
removed altogether.

The following sections describe the capabilities of the Nios II JTAG debug module
hardware. The usage of all hardware features is dependent on host software, such as
the Nios II Software Build Tools for Eclipse, which manages the connection to the
target processor and controls the debug process.

JTAG Target Connection

The JTAG target connection provides the ability to connect to the processor through
the standard JTAG pins on the Altera FPGA. This provides basic capabilities to start
and stop the processor, and examine and edit registers and memory. The JTAG target
connection is the minimum requirement for the Nios II flash programmer.

L=~ While the processor has no minimum clock frequency requirements, Altera
recommends that your design’s system clock frequency be at least four times the
JTAG clock frequency to ensure that the on-chip instrumentation (OCI) core functions

properly.

Download and Execute Software

Downloading software refers to the ability to download executable code and data to
the processor’s memory via the JTAG connection. After downloading software to
memory, the JTAG debug module can then exit debug mode and transfer execution to
the start of executable code.

Software Breakpoints

Software breakpoints allow you to set a breakpoint on instructions residing in RAM.
The software breakpoint mechanism writes a break instruction into executable code
stored in RAM. When the processor executes the break instruction, control is
transferred to the JTAG debug module.

Hardware Breakpoints

Hardware breakpoints allow you to set a breakpoint on instructions residing in
nonvolatile memory, such as flash memory. The hardware breakpoint mechanism
continuously monitors the processor’s current instruction address. If the instruction
address matches the hardware breakpoint address, the JTAG debug module takes
control of the processor.

Hardware breakpoints are implemented using the JTAG debug module’s hardware
trigger feature.
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Hardware Triggers

Hardware triggers activate a debug action based on conditions on the instruction or
data bus during real-time program execution. Triggers can do more than halt
processor execution. For example, a trigger can be used to enable trace data collection
during real-time processor execution.

Table 2-6 lists all the conditions that can cause a trigger. Hardware trigger conditions
are based on either the instruction or data bus. Trigger conditions on the same bus can
be logically ANDed, enabling the JTAG debug module to trigger, for example, only on
write cycles to a specific address.

Table 2-6. Trigger Conditions

Condition Bus Description

Specific address Data, Trigger when the bus accesses a specific address.
Instruction

Specific data value | Data Trigger when a specific data value appears on the bus.

Read cycle Data Trigger on a read bus cycle.

Write cycle Data Trigger on a write bus cycle.

Armed Data, Trigger only after an armed trigger event. Refer to “Armed
Instruction | Triggers” on page 2—19.

Range Data Trigger on a range of address values, data values, or both. Refer

to “Triggering on Ranges of Values” on page 2—-20.

When a trigger condition occurs during processor execution, the JTAG debug module
triggers an action, such as halting execution, or starting trace capture. Table 2-7 lists
the trigger actions supported by the Nios II JTAG debug module.

Tahle 2-7. Trigger Actions

Action Description
Break Halt execution and transfer control to the JTAG debug module.
External trigger Assert a trigger signal output. This trigger output can be used, for example,
to trigger an external logic analyzer.
Trace on Turn on trace collection.
Trace off Turn off trace collection.
Trace sample (1) Store one sample of the bus to trace buffer.
Arm Enable an armed trigger.

Notes to Table 2-7:
(1) Only conditions on the data bus can trigger this action.

Armed Triggers

The JTAG debug module provides a two-level trigger capability, called armed
triggers. Armed triggers enable the JTAG debug module to trigger on event B, only
after event A. In this example, event A causes a trigger action that enables the trigger
for event B.
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Triggering on Ranges of Values

The JTAG debug module can trigger on ranges of data or address values on the data
bus. This mechanism uses two hardware triggers together to create a trigger condition
that activates on a range of values within a specified range.

Trace Capture

Trace capture refers to ability to record the instruction-by-instruction execution of the
processor as it executes code in real-time. The JTAG debug module offers the
following trace features:

m Capture execution trace (instruction bus cycles).

m Capture data trace (data bus cycles).

m For each data bus cycle, capture address, data, or both.

m Start and stop capturing trace in real time, based on triggers.
® Manually start and stop trace under host control.

m  Optionally stop capturing trace when trace buffer is full, leaving the processor
executing.

m Store trace data in on-chip memory buffer in the JTAG debug module. (This
memory is accessible only through the JTAG connection.)

m Store trace data to larger buffers in an off-chip debug probe.

Certain trace features require additional licensing or debug tools from third-party
debug providers. For example, an on-chip trace buffer is a standard feature of the
Nios II processor, but using an off-chip trace buffer requires additional debug
software and hardware provided by First Silicon Solutions (FS2) or Lauterbach
GmbH.

<o For details, refer to the FS2 website (www.fs2.com) and the Lauterbach GmbH
website (www.lauterbach.com).

Execution vs. Data Trace

The JTAG debug module supports tracing the instruction bus (execution trace), the
data bus (data trace), or both simultaneously. Execution trace records only the
addresses of the instructions executed, enabling you to analyze where in memory (i.e.,
in which functions) code executed. Data trace records the data associated with each
load and store operation on the data bus.

The JTAG debug module can filter the data bus trace in real time to capture the
following:

m Load addresses only

m Store addresses only

m Both load and store addresses
m Load data only

m Load address and data

m Store address and data
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m Address and data for both loads and stores

m Single sample of the data bus upon trigger event

Trace Frames

A frame is a unit of memory allocated for collecting trace data. However, a frame is
not an absolute measure of the trace depth.

To keep pace with the processor executing in real time, execution trace is optimized to
store only selected addresses, such as branches, calls, traps, and interrupts. From
these addresses, host-side debug software can later reconstruct an exact
instruction-by-instruction execution trace. Furthermore, execution trace data is stored
in a compressed format, such that one frame represents more than one instruction. As
a result of these optimizations, the actual start and stop points for trace collection
during execution might vary slightly from the user-specified start and stop points.

Data trace stores 100% of requested loads and stores to the trace buffer in real time.
When storing to the trace buffer, data trace frames have lower priority than execution
trace frames. Therefore, while data frames are always stored in chronological order,
execution and data trace are not guaranteed to be exactly synchronized with each
other.

Referenced Documents

This chapter references the following documents:
m  Programming Model chapter of the Nios II Processor Reference Handbook

m [nstantiating the Nios 1I Processor in SOPC Builder chapter of the Nios II Processor
Reference Handbook

m  Nios II Core Implementation Details chapter of the Nios II Processor Reference
Handbook

m [nstruction Set Reference chapter of the Nios II Processor Reference Handbook

m  Vectored Interrupt Controller chapter in the Embedded Peripherals IP User Guide
m  Nios II Custom Instruction User Guide

m Avalon Interface Specifications

m AN 391: Profiling Nios II Systems

m Literature: Megafunctions page on the Altera website

Document Revision History

Table 2-8 shows the revision history for this document.
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Version Changes Made Summary of Changes
July 2010 Maintenance release. —
v10.0.0
November 2009 m Added external interrupt controller interface information. Added shadow register sets
v9.1.0 = Added shadow register set information. and external interrupt

controller support
March 2009 Maintenance release. —
v9.0.0
November 2008 m Expanded floating-point instructions information. —
v8.1.0 m Updated description of optional cpu_r eset r equest and
cpu_resett aken signals.
m Added description of optional debugr eq and debugack signals.
May 2008 Added MMU and MPU sections. Added MMU and MPU.
v8.0.0
October 2007 Maintenance release. —
v7.2.0
May 2007 m Added table of contents to Introduction section. —
v7.1.0 m Added Referenced Documents section.
March 2007 Maintenance release. —
v7.0.0
November 2006 Described interrupt vector custom instruction. Interrupt vector custom
v6.1.0 instruction added.
May 2006 m Added description of optional cpu_r eset r equest and —
v6.0.0 cpu_resettaken.
m Added section on single precision floating-point instructions.

October 2005 Maintenance release. —
v5.1.0
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vl
May 2004 Initial release. —
v1.0
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Introduction

This chapter describes the Nios® II programming model, covering processor features
at the assembly language level. Fully understanding the contents of this chapter
requires prior knowledge of computer architecture, operating systems, virtual
memory and memory management, software processes and process management,
exception handling, and instruction sets. This chapter assumes you have a detailed
understanding of the aforementioned concepts and focuses on how these concepts are
specifically implemented in the Nios II processor. Where possible, this chapter uses
industry-standard terminology.

This chapter discusses the following topics from the system programmer’s
perspective:

m  Operating modes, page 3—2—Defines the relationships between executable code
and memory.

B Memory management unit (MMU), page 3-3—Describes virtual memory support
for full-featured operating systems.

m  Memory protection unit (MPU), page 3-8—Describes memory protection without
virtual memory management.

m Registers, page 3-10—Describes the Nios II register sets.

m  Working With the MPU, page 3-29—Provides an overview of MPU initialization
and operation.

m  Exception processing, page 3-30—Describes how the Nios II processor responds
to exceptions.

® Memory and Peripheral Access, page 3-52—Describes Nios II addressing.

m Instruction set categories, page 3-54—Introduces the Nios II instruction set.

Because of the flexibility and capability range of the Nios II processor, this chapter
covers topics that support a variety of operating systems and runtime environments.
While reading, be aware that all sections might not apply to you. For example, if you
are using a minimal system runtime environment, you can skip the sections covering
operating modes, the MMU, the MPU, or the control registers exclusively used by the
MMU and MPU.

High-level software development tools are not discussed here. Refer to the Nios 1]
Software Developer’s Handbook for information about developing software.
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Operating Modes

Supervisor Mode

User Mode

1=

Operating modes control how the processor operates, manages system memory, and
accesses peripherals. The Nios II architecture supports these operating modes:

m Supervisor mode
m User mode

The following sections define the modes, their relationship to your system software
and application code, and their relationship to the Nios Il MMU and Nios Il MPU.
Refer to “Memory Management Unit” on page 3-3 for more information about the
Nios I MMU. Refer to “Memory Protection Unit” on page 3-8 for more information
about the Nios II MPU.

Supervisor mode allows unrestricted operation of the processor. All code has access to
all processor instructions and resources. The processor may perform any operation
the Nios II architecture provides. Any instruction may be executed, any I/O operation
may be initiated, and any area of memory may be accessed.

Operating systems and other system software run in supervisor mode. In systems
with an MMU, application code runs in user mode, and the operating system,
running in supervisor mode, controls the application’s access to memory and
peripherals. In systems with an MPU, your system software controls the mode in
which your application code runs. In Nios II systems without an MMU or MPU, all
application and system code runs in supervisor mode.

Code that needs direct access to and control of the processor runs in supervisor mode.
For example, the processor enters supervisor mode whenever a processor exception
(including processor reset or break) occurs. Software debugging tools also use
supervisor mode to implement features such as breakpoints and watchpoints.

For systems without an MMU or MPU, all code runs in supervisor mode.

User mode is available only when the Nios II processor in your hardware design
includes an MMU or MPU. User mode exists solely to support operating systems.
Operating systems (that make use of the processor’s user mode) run your application
code in user mode. The user mode capabilities of the processor are a subset of the
supervisor mode capabilities. Only a subset of the instruction set is available in user
mode.

The operating system determines which memory addresses are accessible to user
mode applications. Attempts by user mode applications to access memory locations
without user access enabled are not permitted and cause an exception. Code running
in user mode uses system calls to make requests to the operating system to perform
I/0O operations, manage memory, and access other system functionality in the
supervisor memory.
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Memory Management Unit

The Nios Il MMU statically divides the 32-bit virtual address space into user and
supervisor partitions. Refer to “Address Space and Memory Partitions” on page 3—4
for more information about the MMU memory partitions. The MMU provides
operating systems access permissions on a per-page basis. Refer to “Virtual
Addressing” on page 3-3 for more information about MMU pages.

The Nios I MPU supervisor and user memory divisions are determined by the
operating system or runtime environment. The MPU provides user access
permissions on a region basis. Refer to “Memory Regions” on page 3-9 for more
information about MPU regions.

Memory Management Unit

The Nios II processor provides an MMU to support full-featured operating systems.
Operating systems that require virtual memory rely on an MMU to manage the
virtual memory. When present, the MMU manages memory accesses including
translation of virtual addresses to physical addresses, memory protection, cache
control, and software process memory allocation.

Recommended Usage

Including the Nios II MMU in your Nios Il hardware system is optional. The MMU is
only useful with an operating system that takes advantage of it.

Many Nios II systems have simpler requirements where minimal system software or a
small-footprint operating system (such as the Altera® hardware abstraction library
(HAL) or a third party real-time operating system) is sufficient. Such software is
unlikely to function correctly in a hardware system with an MMU-based Nios II
processor. Do not include an MMU in your Nios II system unless your operating
system requires it.

L=~ The Altera HAL and HAL-based real-time operating systems do not support the
MMU.
If your system needs memory protection, but not virtual memory management, refer
to “Memory Protection Unit” on page 3-8.
Memory Management

Memory management comprises two key functions:

m Virtual addressing—Mapping a virtual memory space into a physical memory
space

B Memory protection—Allowing access only to certain memory under certain
conditions

Virtual Addressing

A virtual address is the address that software uses. A physical address is the address
which the hardware outputs on the address lines of the Avalon® bus. The Nios II
MMU divides virtual memory into 4 kilobyte (KB) pages and physical memory into
4 KB frames.
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The MMU contains a hardware translation lookaside buffer (TLB). The operating
system is responsible for creating and maintaining a page table (or equivalent data
structures) in memory. The hardware TLB acts as a software managed cache for the
page table. The MMU does not perform any operations on the page table, such as
hardware table walks. Therefore the operating system is free to implement its page
table in any appropriate manner.

Table 3-1 shows how the Nios Il MMU divides up the virtual address. There is a 20 bit
virtual page number (VPN) and a 12 bit page offset.

Table 3-1. MMU Virtual Address Fields

31‘30‘29‘28‘21‘26|25|24|23|22‘21‘20‘19‘18‘17‘16‘15‘14‘13‘12 11‘10‘9|8|7|6|5‘4‘3‘2‘1‘0

Virtual Page Number Page Offset

As input, the TLB takes a VPN plus a process identifier (to guarantee uniqueness). As
output, the TLB provides the corresponding physical frame number (PFN).

Distinct processes can use the same virtual address space. The process identifier,
concatenated with the virtual address, distinguishes identical virtual addresses in
separate processes. To determine the physical address, the Nios Il MMU translates a
VPN to a PFN and then concatenates the PEN with the page offset. The bits in the
page offset are not translated.

Memory Protection

The Nios I MMU maintains read, write, and execute permissions for each page. The
TLB provides the permission information when translating a VPN. The operating
system can control whether or not each process is allowed to read data from, write
data to, or execute instructions on each particular page. The MMU also controls
whether accesses to each data page are cacheable or uncacheable by default.

Whenever an instruction attempts to access a page that either has no TLB mapping, or
lacks the appropriate permissions, the MMU generates an exception. The Nios II
processor’s precise exceptions enable the system software to update the TLB, and then
re-execute the instruction if desired.

Address Space and Memory Partitions

The MMU provides a 4-gigabyte (GB) virtual address space, and is capable of
addressing up to 4 GB of physical memory.

The amount of actual physical memory, determined by the configuration of your
hardware system, might be less than the available 4 GB of physical address space.
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Virtual Memory Address Space

The 4-GB virtual memory space is divided into partitions. The upper 2 GB of memory
is reserved for the operating system and the lower 2 GB is reserved for user processes.
Table 3-2 names and describes the partitions.

Table 3-2. Virtual Memory Partitions

User Mode | Default Data
Partition Virtual Address Range Used By Memory Access Access Cacheability
I/0 (1) 0xE0000000-0x FFFFFFFF Operating Bypasses TLB No Disabled
system
Kernel (1) 0xC0000000-0x DFFFFFFF Operating Bypasses TLB No Enabled
system
Kernel MMU (7) | 0x80000000-0x BFFFFFFF Operating Uses TLB No Set by TLB
system
User 0x00000000-0x 7FFFFFFF User Uses TLB Set by TLB Set by TLB
processes

Note to Table 3-2:
(1) Supervisor-only partition
Each partition has a specific size, purpose, and relationship to the TLB:
m The 512-megabyte (MB) I/O partition provides access to peripherals.
m The 512-MB kernel partition provides space for the operating system kernel.

m  The 1-GB kernel MMU partition is used by the TLB miss handler and kernel
processes.

m The 2-GB user partition is used by application processes.

I/0O and kernel partitions bypass the TLB. The kernel MMU and user partitions use
the TLB. If all software runs in the kernel partition, the MMU is effectively disabled.

Physical Memory Address Space

The 4-GB physical memory is divided into low memory and high memory. The lowest
% GB of physical address space is low memory. The upper 3% GB of physical address
space is high memory. Figure 3-1 shows how physical memory is divided.

Figure 3-1. Division of Physical Memory

OXFFFFFFFF

3.5 GByte High Memory Accessed only via TLB
oxz2o0o000000¢(
Ox1FFFFFFF _ .

0.5 GByte Low Memory Accessed directly or via TLB
0x00000000
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TLB Organization

High physical memory can only be accessed through the TLB. Any physical address
in low memory (29-bits or less) can be accessed through the TLB or by bypassing the
TLB. When bypassing the TLB, a 29-bit physical address is computed by clearing the
top three bits of the 32-bit virtual address.

To function correctly, the base physical address of all exception vectors (reset, general
exception, break, and fast TLB miss) must point to low physical memory so that
hardware can correctly map their virtual addresses into the kernel partition. This
restriction is enforced by the Nios II Processor MegaWizard™ interface in SOPC
Builder.

Data Cacheability

Each partition has a rule that determines the default data cacheability property of
each memory access. When data cacheability is enabled on a partition of the address
space, a data access to that partition can be cached, if a data cache is present in the
system. When data cacheability is disabled, all access to that partition goes directly to
the Avalon switch fabric. Bit 31 is not used to specify data cacheability, as it is in
Nios II cores without MMUs. Virtual memory partitions that bypass the TLB have a
default data cacheability property, as shown in Table 3-2. For partitions that are
mapped through the TLB, data cacheability is controlled by the TLB on a per-page
basis.

Non-1/0 load and store instructions use the default data cacheability property. I/O
load and store instructions are always noncacheable, so they ignore the default data
cacheability property.

A TLB functions as a cache for the operating system’s page table. In Nios II processors
with an MMU, one main TLB is shared by instruction and data accesses. The TLB is
stored in on-chip RAM and handles translations for instruction fetches and
instructions that perform data accesses.

The TLB is organized as an n-way set-associative cache. The software specifies the
way (set) when loading a new entry.

You can configure the number of TLB entries and the number of ways (set
associativity) of the TLB in SOPC Builder at system generation time. By default, the
TLB is a 16-way cache. The default number of entries depends on the target device, as
follows:

m  Cyclone® I, Stratix® II, Stratix Il GX—128 entries, requiring one M4K RAM

m  Cyclone III, Stratix III, Stratix IV—256 entries, requiring one MO9K RAM

For further detail, refer to the Instantiating the Nios II Processor in SOPC Builder
chapter of the Nios II Processor Reference Handbook.

The operating system software is responsible for guaranteeing that multiple TLB
entries do not map the same virtual address. The hardware behavior is undefined
when multiple entries map the same virtual address.

Each TLB entry consists of a tag and data portion. This is analogous to the tag and
data portion of instruction and data caches.
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«® Refer to the Nios II Core Implementation Details chapter of the Nios II Processor Reference

Handbook for details on instruction and data caches.

The tag portion of a TLB entry contains information used when matching a virtual
address to a TLB entry. Table 3-3 describes the tag portion of a TLB entry.

Table 3-3. TLB Tag Portion Contents

Field Name

Description

VPN

VPNis the virtual page number field. This field is compared with the top 20 bits of
the virtual address.

PI D

PI Dis the process identifier field. This field is compared with the value of the
current process identifier stored in the t | bmi sc control register, effectively
extending the virtual address. The field size is configurable at system generation
time, and can be between 8 and 14 bits.

G

Gis the global flag. When G=1, the PI Dis ignored in the TLB lookup.

The TLB data portion determines how to translate a matching virtual address to a
physical address. Table 3—4 describes the data portion of a TLB entry.

Table 3-4. TLB Data Portion Contents

Field Name Description

PFN PFN s the physical frame number field. This field specifies the upper bits of the
physical address. The size of this field depends on the range of physical addresses
present in the system. The maximum size is 20 bits.

C Cis the cacheable flag. Determines the default data cacheability of a page. Can be
overridden for data accesses using 1/0 load and store family of Nios Il instructions.

R Ris the readable flag. Allows load instructions to read a page.

wW Wis the writable flag. Allows store instructions to write a page.

X Xis the executable flag. Allows instruction fetches from a page.

"=~ Because there is no “valid bit” in the TLB entry, the operating system software

invalidates the TLB by writing unique VPN values from the I/O partition of virtual
addresses into each TLB entry.

© July 2010 Altera Corporation
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TLB Lookups

A TLB lookup attempts to convert a virtual address (VADDR) to a physical address
(PADDR).

The TLB lookup algorithm for instruction fetches is shown in Example 3-1.

Example 3-1. TLB Lookup Algorithm for Instruction Fetches

if (VPN match & (G == 1 || PID match))
if (X ==1)
PADDR = concat ( PFN, VADDR] 11:0])
el se
take TLB permi ssion violation exception
el se
if (EH bit of status register == 1)
t ake doubl e TLB mni ss exception
el se
take fast TLB miss exception

The TLB lookup algorithm for data accesses is shown in Example 3-2.

Example 3-2. TLB Lookup Algorithm for Data Access Operations

if (VPN match & (G == 1 || PID match))
if ((load & R == 1) || (store & W== 1) || flushda)
PADDR = concat enat e( PFN, VADDR[ 11:0])
el se
t ake TLB permi ssion viol ation exception

el se
if (EH bit of status register == 1)
t ake doubl e TLB mi ss exception
el se
take fast TLB miss exception

“®.® Refer to “Instruction-Related Exceptions” on page 3-39 for details on TLB exceptions.

Memory Protection Unit

The Nios II processor provides an MPU for operating systems and runtime
environments that desire memory protection but do not require virtual memory
management. For information about memory protection with virtual memory
management, refer to “Memory Management Unit” on page 3-3.

When present and enabled, the MPU monitors all Nios II instruction fetches and data
memory accesses to protect against errant software execution. The MPU is a hardware
facility that system software uses to define memory regions and their associated
access permissions. The MPU triggers an exception if software attempts to access a
memory region in violation of its permissions, allowing you to intervene and handle
the exception as appropriate. The precise exception effectively prevents the illegal
access to memory.

The MPU extends the Nios II processor to support user mode and supervisor mode.
Typically, system software runs in supervisor mode and end-user applications run in
user mode, although all software can run in supervisor mode if desired. System
software defines which MPU regions belong to supervisor mode and which belong to
user mode.
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Memory Regions

The MPU contains up to 32 instruction regions and 32 data regions. Each region is
defined by the following attributes:

m Base address

m Region type

B Region index

B Region size or upper address limit
m  Access permissions

m Default cacheability (data regions only)

Base Address

The base address specifies the lowest address of the region. The base address is
aligned on a region-sized boundary. For example, a 4 KB region must have a base
address that is a multiple of 4 KB. If the base address is not properly aligned, the
behavior is undefined.

Region Type

Each region is identified as either an instruction region or a data region.

Region Index

Each region has an index ranging from zero to the number of regions of its region type
minus one. Index zero has the highest priority.

Region Size or Upper Address Limit

An SOPC Builder generation-time option controls whether the amount of memory in
the region is defined by size or upper address limit. The size is an integer power of
two bytes. The limit is the highest address of the region plus one. The minimum
supported region size is 64 bytes but can be configured at system generation time for
larger minimum sizes to save logic resources. The maximum supported region size
equals the Nios II address space (a function of the address ranges of slaves connected
to the Nios II masters). Any access outside of the Nios II address space is considered
not to match any region and triggers an MPU region violation exception.

When regions are defined by size, the size is encoded as a binary mask to facilitate the
following MPU region address range matching:

(address & regi on_nmask) == regi on_base_address

When regions are defined by limit, the limit is encoded as an unsigned integer to
facilitate the following MPU region address range matching:

(address >= region_base) && (address < region_ linmt)

The region limit uses a less-than instead of a less-than-or-equal-to comparison
because less-than provides a more efficient implementation. The limit is one bit larger
than the address so that full address range may be included in a range. Defining the
region by limit results in slower and larger address range match logic than defining
by size but allows finer granularity in region sizes.
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Access Permissions

The access permissions consist of execute permissions for instruction regions and
read/write permissions for data regions. Any instruction that performs a memory
access that violates the access permissions triggers an exception. Additionally, any
instruction that performs a memory access that does not match any region triggers an
exception.

Default Cacheability

The default cacheability specifies whether normal load and store instructions access
the data cache or bypass the data cache. The default cacheability is only present for
data regions. You can override the default cacheability by using the | di o or sti o
instructions. The bit 31 cache bypass feature is available when the MPU is present.
Refer to “Cache Memory” on page 3-53 for more information on cache bypass.

Overlapping Regions

The memory addresses of regions can overlap. Overlapping regions have several uses
including placing markers or small holes inside of a larger region. For example, the
stack and heap may be located in the same region, growing from opposite ends of the
address range. To detect stack /heap overflows, you can define a small region between
the stack and heap with no access permissions and assign it a higher priority than the
larger region. Any access attempts to the hole region trigger an exception informing
system software about the stack /heap overflow.

If regions overlap so that a particular access matches more than one region, the region
with the highest priority (lowest index) determines the access permissions and default
cacheability.

Enabling the MPU

Registers

The MPU is disabled on system reset. System software enables and disables the MPU
by writing to a control register. Before enabling the MPU, you must create at least one
instruction and one data region, otherwise unexpected results can occur. Refer to
“Working with the MPU” on page 3-29 for more information.

The Nios I register set includes general-purpose registers and control registers. In
addition, the Nios II/f core can optionally have shadow register sets. This section
discusses each type of registers.

General-Purpose Registers

The Nios II architecture provides thirty-two 32-bit general-purpose registers, r 0
through r 31, as shown in Table 3-5. Some registers have names recognized by the
assembler. For example, the zer o register (r 0) always returns the value zero, and
writing to zer 0 has no effect. The r a register (r 31) holds the return address used by
procedure calls and is implicitly accessed by the cal | ,cal | r and r et instructions. C
and C++ compilers use a common procedure-call convention, assigning specific
meaning to registers r 1 through r 23 and r 26 through r 28.
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Table 3-5. The Nios Il General Purpose Registers

Register Name Function Register Name Function
ro zero 0x00000000 ri6
ri at Assembler temporary ri7
r2 Return value rig
r3 Return value ri9
ra Register arguments r20
r5 Register arguments r21
reé Register arguments r22
r7 Register arguments r23
r8 Caller-saved register r24 et Exception temporary
ro Caller-saved register r25 bt Breakpoint temporary (7)
rio Caller-saved register r26 ap Global pointer
ril Caller-saved register r27 sp Stack pointer
riz Caller-saved register r28 fp Frame pointer
ri3 Caller-saved register r29 ea Exception return address
ri4 Caller-saved register r 30 ba Breakpoint return address (2)
ris Caller-saved register r3i ra Return address

Notes to Tahle 3-5:

(1) r25is used exclusively by the JTAG debug module. It is used as the breakpoint temporary (bt ) register in the normal register set. In shadow
register sets, r 25 is reserved.

(2) r30is used as the breakpoint return address (ba) in the normal register set, and as the shadow register set status (sst at us) in each shadow
register set. For details about sst at us, refer to “The sstatus Register” on page 3-27.

“®.e For more information, refer to the Application Binary Interface chapter of the Nios II
Processor Reference Handbook.

Control Registers

Control registers report the status and change the behavior of the processor. Control
registers are accessed differently than the general-purpose registers. The special
instructions r dct | and wr ct | provide the only means to read and write to the
control registers and are only available in supervisor mode.

I'=~ When writing to control registers, all undefined bits must be written as zero.
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The Nios II architecture supports up to 32 control registers. Table 3—6 shows details of
the defined control registers. All nonreserved control registers have names recognized
by the assembler.

Table 3-6. Control Register Names and Bits

Register Name Register Contents
0 status Refer to Table 3-7 on page 3-12
1 est at us Refer to Table 3-9 on page 3-14
2 bst at us Refer to Table 3—10 on page 3—15
3 i enabl e Internal interrupt-enable bits (3)
4 i pendi ng Pending internal interrupt bits (3)
5 cpuid Unique processor identifier
6 Reserved Reserved
7 exception Refer to Table 3—11 on page 3—-16
8 pt eaddr (1) Refer to Table 3—13 on page 3-16
9 tl bacc (1) Refer to Table 3-15 on page 3-17
10 tlbmsc (1) Refer to Table 3—17 on page 3—18
11 Reserved Reserved
12 badaddr Refer to Table 3—19 on page 3-21
13 config (2) Refer to Table 3-21 on page 3-21
14 npubase (2) Refer to Table 3-23 on page 3-22
15 npuacc (2) Refer to Table 3-25 on page 3-23
16-31 Reserved Reserved

Notes to Table 3-6:
(1) Available only when the MMU is present. Otherwise reserved.
(2) Available only when the MPU is present. Otherwise reserved.
(3) Available only when the external interrupt controller interface is not present. Otherwise reserved.

The following sections describe the nonreserved control registers.

The status Register

The value in the st at us register determines the state of the Nios II processor. All
st at us bits are set to predefined values at processor reset. Some bits are exclusively
used by and available only to certain features of the processor, such as the MMU,
MPU or external interrupt controller (EIC) interface. Table 3—7 shows the layout of the
st at us register.

Tahle 3-7. status Control Register Fields

31‘30‘29‘28‘21‘26|25|24 23

22

21‘20‘19‘18‘17‘16

15‘14‘13‘12‘11‘10

9|8|7|6|5‘43210

Reserved

RSI E

=
=z

PRS

CRS

IL u

IH
EH
Pl E
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Table 3-8 gives details of the fields defined in the st at us register.
Table 3-8. status Control Register Field Descriptions (Part 1 of 2)
Bit Description Access Reset | Available
RSI E | RSI Eis the register set interrupt-enable bit. When set to 1, this bit allows | Read/Write 1 EIC
the processor to service external interrupts requesting the register set that interface
is currently in use. When set to 0, this bit disallows servicing of such and shadow
interrupts. register
sets only
(4)
NM NM is the nonmaskable interrupt mode bit. The processor sets NM 1o 1 Read 0 EIC
when it takes a nonmaskable interrupt. interface
only (3)
PRS PRS is the previous register set field. The processor copies the CRSfieldto | Read/Write 0 Shadow
the PRS field upon one of the following events: register
m |na processor with no MMU, on any exception Set?S(;nIy
m Inaprocessor with an MMU, on one of the following:
m Break exception
m Nonbreak exception when st at us. EHis zero
The processor copies CRS to PRS immediately after copying the st at us
register to est at us, bst at us or sst at us.
The number of significant bits in the CRS and PRS fields depends on the
number of shadow register sets implemented in the Nios Il core. The value
of CRS and PRS can range from 0 to n-1, where nis the number of
implemented register sets. The processor core implements the number of
significant bits needed to represent n-1. Unused high-order bits are always
read as 0, and must be written as 0.
I =~ Ensure that system software writes only valid register set numbers to
the PRS field. Processor behavior is undefined with an unimplemented
register set number.
CRS CRS s the current register set field. CRS indicates which register set is Read (7) 0 Shadow
currently in use. Register set 0 is the normal register set, while register sets register
1 and higher are shadow register sets. The processor sets CRS to zero on sets only
any noninterrupt exception. (3)
The number of significant bits in the CRS and PRS fields depends on the
number of shadow register sets implemented in the Nios Il core. Unused
high-order bits are always read as 0, and must be written as 0.
IL | L is the interrupt level field. The I L field controls what level of external Read/Write 0 EIC
maskable interrupts can be serviced. The processor services a maskable interface
interrupt only if its requested interrupt level is greater than I L. only (3)
I H | His the interrupt handler mode bit. The processor sets | Hto one when it | Read/Write 0 EIC
takes an external interrupt. interface
only (3)
EH (2) | EHis the exception handler mode bit. The processor sets EHto one when | Read/Write 0 MMU only
an exception occurs (including breaks). Software clears EHto zero when (3)

ready to handle exceptions again. EH s used by the MMU to determine
whether a TLB miss exception is a fast TLB miss or a double TLB miss. In
systems without an MMU, EH is always zero.

© July 2010 Altera Corporation
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Table 3-8. status Control Register Field Descriptions (Part 2 of 2)
Bit Description Access Reset | Available
U(2) | Uisthe user mode bit. When U= 1, the processor operates in user mode. | Read/Write 0 MMU or
When U = 0, the processor operates in supervisor mode. In systems MPU only
without an MMU, U is always zero. (3)
Pl E PI E is the processor interrupt-enable bit. When PI E = 0, internal and Read/Write 0 Always

maskable external interrupts and noninterrupt exceptions are ignored.
When PI E =1, internal and maskable external interrupts can be taken,
depending on the status of the interrupt controller. Noninterrupt exceptions
are unaffected by PI E.

Notes to Table 3-8:

(1) The CRSfield is read-only. For information about manually changing register sets, refer to “External Interrupt Controller Interface” on
page 3-36.

(2) The state where both EHand Uare one is illegal and causes undefined results.
(3) When this field is unimplemented, the field value always reads as 0, and the processor behaves accordingly.
(4) When this field is unimplemented, the field value always reads as 1, and the processor behaves accordingly.

The estatus Register

The est at us register holds a saved copy of the st at us register during nonbreak
exception processing. Table 3-9 shows the layout of the est at us register.

Table 3-9. estatus Control Register Fields

31‘30‘29‘28‘27‘26|25|24 23 | 22 21‘20‘19‘18‘17‘16 15‘14‘13‘12‘11‘10 9|8|7|6|5‘4 3| 2|10

Reserved PRS CRS IL
s T
Z —

EH
U
Pl E

RSI E

All fields in the est at us register have read/write access. All fields reset to 0.
Table 3-8 describes the details of the fields defined in the est at us register.

When the Nios II processor takes an interrupt, if st at us. eh is zero (that is, the MMU
is in nonexception mode), the processor copies the contents of the st at us register to
est at us.

L& If shadow register sets are implemented, and the interrupt requests a shadow register
set, the Nios II processor copies status to sst at us, not to est at us.

-o For details about the sst at us register, refer to “The sstatus Register” on page 3-27.

The exception handler can examine est at us to determine the pre-exception status of
the processor. When returning from an exception, the er et instruction restores the
pre-exception value of st at us. The instruction restores the pre-exception value by
copying either est at us or sst at us back to st at us, depending on the value of
stat us. CRS.

Refer to “Exception Processing” on page 3-30 for more information.
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The bstatus Register

The bst at us register holds a saved copy of the st at us register during break
exception processing. Table 3-10 shows the layout of the bst at us register.

Table 3-10. bstatus Control Register Fields

31‘30‘29‘28‘27‘26|25|24 23 | 22 21‘20‘19‘18‘17‘16 15‘14‘13‘12‘11‘10 9|8|7|6|5‘4 3 (2 |1]0

Reserved

PRS CRS IL
s I
Z —

EH
U
Pl E

RSI E

All fields in the bst at us register have read/write access. All fields reset to 0.
Table 3-8 describes the details of the fields defined in the bst at us register.

When a break occurs, the value of the st at us register is copied into bst at us. Using
bst at us, the debugger can restore the st at us register to the value prior to the
break. The br et instruction causes the processor to copy bst at us back to st at us.
Refer to “Processing a Break” on page 3-35 for more information.

The ienable Register

The i enabl e register controls the handling of internal hardware interrupts. Each bit
of the i enabl e register corresponds to one of the interrupt inputs, i r g0 through

i rq31. A value of one in bit # means that the corresponding i r qn interrupt is
enabled; a bit value of zero means that the corresponding interrupt is disabled. Refer
to “Exception Processing” on page 3-30 for more information.

When the internal interrupt controller is not implemented, the value of the i enabl e
register is always 0.

The ipending Register

The value of the i pendi ng register indicates the value of the interrupt signals driven
into the processor. A value of one in bit # means that the corresponding i r gn input is
asserted. Writing a value to the i pendi ng register has no effect.

The i pendi ng register is present only when the internal interrupt controller is
implemented.

The cpuid Register

The cpui d register holds a constant value that uniquely identifies each processor in a
multiprocessor system. The cpui d value is determined at system generation time and
is guaranteed to be unique for each processor in the system. Writing to the cpui d
register has no effect.

The exception Register

When the extra exception information option is enabled, the Nios II processor
provides information useful to system software for exception processing in the
except i on and badaddr registers when an exception occurs. When your system
contains an MMU or MPU, the extra exception information is always enabled. When
no MMU or MPU is present, the Nios Il Megawizard interface gives you the option to
have the processor provide the extra exception information.
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To see how to control the extra exception information option, refer to the Instantiating
the Nios 1I Processor in SOPC Builder chapter of the Nios II Processor Reference Handbook.

Table 3-11 shows the layout of the except i on register.

Table 3-11. exception Control Register Field Descriptions

Field Description Access Reset Available
CAUSE CAUSE is written by the Nios Il processor when certain exceptions Read 0 Only with
occur. CAUSE contains a code for the highest-priority exception extra
occurring at the time. The Cause column in Table 3-33 on exception
page 3-32 shows the CAUSE field value for each exception. information
CAUSE is not written on a break or an external interrupt.

Table 3-12 gives details of the fields defined in the except i on register.

Table 3-12. exception Control Register Fields

31‘30‘29‘28‘27‘26|25|24|23|22‘21‘20‘19‘18‘17‘16‘15‘14‘13‘12‘11‘10‘9|8|7 6|5‘4‘3‘2 1‘0
Reserved CAUSE Rsvd

The pteaddr Register

The pt eaddr register contains the virtual address of the operating system’s page
table and is only available in systems with an MMU. The pt eaddr register layout
accelerates fast TLB miss exception handling. Table 3—-13 shows the layout of the
pt eaddr register.

Table 3-13. pteaddr Control Register Fields
31‘30‘29‘28‘27‘26|25|24|23|22 21‘20‘19‘18‘17‘16‘15‘14‘13‘12‘11‘10‘9|8|7|6|5‘4‘3‘2 1‘0
PTBASE VPN Rsvd

Table 3-14 gives details of the fields defined in the pt eaddr register.

Table 3—-14. pteaddr Control Register Field Descriptions

Field Description Access Reset Availahle

PTBASE PTBASE is the base virtual address of the page table. Read/Write 0 Only with
MMU

VPN VPN is the virtual page number. VPN can be set by both hardware Read/Write 0 Only with
and software. MMU

Software writes to the PTBASE field when switching processes. Hardware never
writes to the PTBASE field.

Software writes to the VPN field when writing a TLB entry. Hardware writes to the
VPN field on a fast TLB miss exception, a TLB permission violation exception, or on a
TLB read operation. The VPN field is not written on any exceptions taken when an
exception is already active, that is, when st at us. EHis already one.
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The tlbacc Register

The t | bacc register is used to access TLB entries and is only available in systems
with an MMU. The t | bacc register holds values that software will write into a TLB
entry or has previously read from a TLB entry. The t | bacc register provides access to
only a portion of a complete TLB entry. pt eaddr . VPNand t | bm sc. Pl Dhold the

remaining TLB entry fields.

Table 3-15 shows the layout of the t | bacc register.

Table 3-15. tlbacc Control Register Fields

31‘30‘29‘28‘27‘26|25 24 (2322|2120 19‘18‘17‘16‘15‘14‘13‘12‘11‘10‘9|8|7|6|5‘4‘3‘2‘1‘0

G

CIR|W X|G

PFN

Table 3-16 gives details of the fields defined in the t | bacc register.

Issuing awr ct | instruction to the t | bacc register writes the t | bacc register with
the specified value. If t | bmi sc. WE=1, thewr ct | instruction also initiates a TLB
write operation, which writes a TLB entry. The TLB entry written is specified by the
line portion of pt eaddr . VPNand the t | bri sc. WAY field. The value written is
specified by the value written into t | bacc along with the values of pt eaddr . VPN
and t| bm sc. PI D. A TLB write operation also increments t | bm sc. WAY, allowing

software to quickly modify TLB entries.

Issuing ardct | instruction to the t | bacc register returns the value of the t | bacc
register. The t | bacc register is written by hardware when software triggers a TLB
read operation (that is, when wr ct | setst| brmi sc. RDto one).

Tahle 3-16. tlbacc Control Register Field Descriptions

Field Description Access Reset | Available

1 G | Gis ignored by hardware and available to hold operating system Read/Write 0 Only with
specific information. Read as zero but can be written as nonzero. MMU

C Cis the data cacheable flag. When C = 0, data accesses are Read/Write 0 Only with
uncacheable. When C = 1, data accesses are cacheable. MMU

R Ris the readable flag. When R= 0, load instructions are not allowed | Read/Write 0 Only with
to access memory. When R= 1, load instructions are allowed to MMU
access memory.

w Wis the writable flag. When W= 0, store instructions are not allowed | Read/Write 0 Only with
to access memory. When W= 1, store instructions are allowed to MMU
access memory.

X Xis the executable flag. When X = 0, instructions are not allowed to | Read/Write 0 Only with
execute. When X =1, instructions are allowed to execute. MMU

G Gis the global flag. When G=0, t | bmi sc. PI Dis included in the | Read/Write 0 Only with
TLB lookup. When G=1,t| bm sc. PI D is ignored and only the MMU
virtual page number is used in the TLB lookup.

PFN PFN s the physical frame number field. All unused upper bits must | Read/Write 0 Only with
be zero. MMU

© July 2010 Altera Corporation
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The t | bacc register format is the recommended format for entries in the operating
system page table. The | Gbits are ignored by the hardware onwr ct | tot| bacc and
read back as zeroonr dct | fromt | bacc. The operating system can use the | Gbits to
hold operating system specific information without having to clear these bits to zero

on a TLB write operation.

The tlbmisc Register

The t | b sc register contains the remaining TLB-related fields and is only available
in systems with an MMU. Table 3-17 shows the layout of the t | bmi sc register.

Table 3-17. tlbmisc Control Register Fields

31‘30‘29‘28‘21‘26|25|24 23|22‘21‘20

-

9|18 17‘16‘15‘14‘13‘12‘11‘10‘9|8|7|6|5‘4 3|2

Reserved VAY (1)

PI D (1)

DBL
BAD
PERM| =
O

Notes to Table 3-17:
(1) This field size is variable. Unused upper bits must be written as zero.

Table 3-18 gives details of the fields defined in the t | bmi sc register.

Table 3-18. tlbmisc Control Register Field Descriptions

Field Description Access Reset Availahle

VWAY The WAY field controls the mapping from the VPN to a particular Read/Write 0 Only with
TLB entry. MMU

RD RDis the read flag. Setting RDto one triggers a TLB read operation. Write 0 Only with
MMU

V\E V\E is the TLB write enable flag. When WE =1, a write to t | bacc Read/Write 0 Only with
writes through to a TLB entry. MMU

PI D PI Dis the process identifier field. Read/Write 0 Only with
MMU

DBL (1) DBL is the double TLB miss exception flag. Read 0 Only with
MMU

BAD (1) BAD s the bad virtual address exception flag. Read 0 Only with
MMU

PERM(1) PERMIis the TLB permission violation exception flag. Read 0 Only with
MMU

D Dis the data access exception flag. When D = 1, the exception is a Read 0 Only with
data access exception. When D= 0, the exception is an instruction MMU

access exception.

Notes to Table 3-18:
(1) You can also use except i on. CAUSE to determine these exceptions.
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The following sections provide further details of the t | bmi sc fields.

The RD Flag

System software triggers a TLB read operation by setting t | bri sc. RD(with awr ct |
instruction). A TLB read operation loads the following register fields with the
contents of a TLB entry:

m The tag portion of pt eaddr . VPN

m tlbmsc.PID

m Thet| bacc register

The TLB entry to be read is specified by the following values:
m the line portion of pt eaddr . VPN

m tlbmsc. WAY

When system software changes the fields that specify the TLB entry, there is no
immediate effect on pt eaddr. VPN, t | bri sc. PI D, or the t | bacc register. The
registers retain their previous values until the next TLB read operation is initiated. For
example, when the operating system sets pt eaddr . VPNto a new value, the contents
of t | bacc continues to reflect the previous TLB entry. t | bacc does not contain the
new TLB entry until after an explicit TLB read.

The WE Flag

When VEE =1, a write tot | bacc writes thet | bacc register and a TLB entry. When VIE
=0, a write to t | bacc only writes the t | bacc register.

Hardware sets the WE f | ag to one on a TLB permission violation exception, and on a
TLB miss exception when st at us. EH= 0. When a TLB write operation writes the
t | bacc register, the write operation also writes to a TLB entry when ViE = 1.

The WAY Field

The WAY field controls the mapping from the VPN to a particular TLB entry. WAY
specifies the set to be written to in the TLB. The MMU increments WAY when system
software performs a TLB write operation. Unused upper bits in WAY must be written
as zero.

The number of ways (sets) is configurable in SOPC Builder at generation time, up to a
maximum of 16.

The PID Field

Pl Dis a unique identifier for the current process that effectively extends the virtual
address. The process identifier can be less than 14 bits. Any unused upper bits must
be zero.

t 1 bm sc. Pl Dcontains the Pl Dfield from a TLB tag. The operating system must set
the Pl D field when switching processes, and before each TLB write operation.

Use of the process identifier is optional. To implement memory management without
process identifiers, clear t | brmi sc. Pl Dto zero. Without a process identifier, all
processes share the same virtual address space.
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The MMU sets t | bm sc. Pl Don a TLB read operation. When the software triggers a
TLB read, by setting t | bm sc.RDto one with thewr ct | instruction, the Pl Dvalue
read from the TLB has priority over the value written by the wr ct | instruction.

The size of the PI Dfield is configured in SOPC Builder at system generation, and can
be from 8 to 14 bits. If system software defines a process identifier smaller than the
Pl Dfield, unused upper bits must be written as zero.

The DBL Flag

During a general exception, the processor sets DBL to one when a double TLB miss
condition exists. Otherwise, the processor clears DBL to zero.

The DBL flag indicates whether the most recent exception is a double TLB miss
condition. When a general exception occurs, the MMU sets DBL to one if a double TLB
miss is detected, and clears DBL to zero otherwise.

The BAD Flag

During a general exception, the processor sets BAD to one when a bad virtual address
condition exists, and clears BAD to zero otherwise. The following exceptions set the
BAD flag to one:

m Supervisor-only instruction address
m Supervisor-only data address

m Misaligned data address

m Misaligned destination address

Refer to Table 3-33 on page 3-32 for more information on these exceptions.

The PERM Flag

During a general exception, the processor sets PERMto one for a TLB permission
violation exception, and clears PERMto zero otherwise.

The D Flag

The Dflag indicates whether the exception is an instruction access exception or a data
access exception. During a general exception, the processor sets D to one when the
exception is related to a data access, and clears D to zero for all other nonbreak
exceptions.

The following exceptions set the D flag to one:
m Fast TLB miss (data)

m Double TLB miss (data)

m TLB permission violation (read or write)

m Misaligned data address

m Supervisor-only data address
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The badaddr Register

When the extra exception information option is enabled, the Nios II processor
provides information useful to system software for exception processing in the
excepti on and badaddr registers when an exception occurs. When your system
contains an MMU or MPU, the extra exception information is always enabled. When
no MMU or MPU is present, the Nios Il Megawizard interface gives you the option to
have the processor provide the extra exception information.

To see how to control the extra exception information option, refer to the Instantiating
the Nios 1I Processor in SOPC Builder chapter of the Nios II Processor Reference Handbook.

When the option for extra exception information is enabled and a processor exception
occurs, the badaddr register contains the byte instruction or data address associated
with certain exceptions at the time the exception occurred. Table 3-33 on page 3-32
shows which exceptions write the badaddr register along with the value written.
Table 3-19 shows the layout of the badaddr register.

Table 3-19. badaddr Control Register Fields

31‘30‘29‘28‘27‘26|25|24|23|22‘21‘20‘19‘18‘17‘16‘15‘14‘13‘12‘11‘10‘9|8|7|6|5‘4‘3‘2‘1‘ll

BADDR

Table 3-20 gives details of the fields defined in the badaddr register.

Table 3-20. badaddr Control Register Field Descriptions

Field Description Access Reset Availahle
BADDR BADDR contains the byte instruction address or data address Read 0 Only with
associated with an exception when certain exceptions occur. The extra
Address column of Table 3-33 on page 3-32 shows which exception
exceptions write the BADDR field. information

The BADDR field allows up to a 32-bit instruction address or data address. If an MMU
or MPU is present, the BADDR field is 32 bits because MMU and MPU instruction and
data addresses are always full 32-bit values. When an MMU is present, the BADDR
field contains the virtual address.

If there is no MMU or MPU and the Nios II address space is less than 32 bits, unused
high-order bits are written and read as zero. If there is no MMU, bit 31 of a data
address (used to bypass the data cache) is always zero in the BADDR field.

The config Register

The conf i g register configures Nios II runtime behaviors that do not need to be
preserved during exception processing (in contrast to the information in the st at us
register). Table 3-21 shows the layout of the conf i g register.

Tabhle 3-21. config Control Register Fields

31‘30‘29‘28‘21‘26|25|24|23|22‘21‘20‘19‘18‘17‘16‘15‘14‘13‘12‘11‘10‘9|8|7|6|5‘4‘3‘2 110

Reserved

ANl
PE
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Table 3-22 gives details of the fields defined in the conf i g register
Table 3-22. config Control Register Field Descriptions
Field Description Access Reset Availahle

PE PE is the memory protection enable bit. When PE =1, the MPU is Read/Write 0 Only with
enabled. When PE = 0, the MPU is disabled. In systems without an MPU
MPU, PE is always zero.

AN ANl s the automatic nested interrupt mode bit. If ANI is set to Read/Write 0 Only with the
zero, the processor clears st at us. Pl E on each interrupt, EIC interface
disabling fast nested interrupts. If ANI is set to one, the processor and shadow

leaves st at us. Pl Esetto one at the time of an interrupt, enabling
fast nested interrupts.

If the EIC interface and shadow register sets are not implemented in
the Nios Il core, ANI always reads as zero, disabling fast nested
interrupts.

register sets

The mpubase Register

The npubase register works in conjunction with the mpuacc register to set and
retrieve MPU region information and is only available in systems with an MPU.

Table 3-23 shows the layout of the npubase register.

Tahle 3-23. mpubase Control Register Fields

31

30‘29‘28‘21‘26|25|24|23|22‘21‘20‘19‘18‘17‘16‘15‘14‘13‘12‘11‘10‘9|8|7|6

Tale ] ]s

0 BASE (2) INDEX (1) |D
Notes to Table 3-23:
(1) This field size is variable. Unused upper bits must be written as zero.
(2) This field size is variable. Unused upper bits and unused lower bits must be written as zero.
Table 3-24 gives details of the fields defined in the npubase register
Table 3-24. mpubase Gontrol Register Field Descriptions
Field Description Access Reset Availahle
BASE BASE is the base memory address of the region identified by the Read/Write 0 Only with
| NDEX and Dfields. MPU
I NDEX I NDEX is the region index number. Read/Write 0 Only with
MPU
D Dis the region access bit. When D=1, | NDEX refers to a data Read/Write 0 Only with
region. When D=0, | NDEX refers to an instruction region. MPU

Nios Il Processor Reference Handbook

The BASE field specifies the base address of an MPU region. The 25-bit BASE field

corresponds to bits 6 through 30 of the base address, making the base address always
a multiple of 64 bytes. If the minimum region size set in SOPC Builder at generation
time is larger than 64 bytes, unused low-order bits of the BASE field must be written
as zero and are read as zero. For example, if the minimum region size is 1024 bytes,
the four least-significant bits of the BASE field (bits 6 though 9 of the npubase
register) must be zero. Similarly, if the Nios II address space is less than 31 bits,
unused high-order bits must also be written as zero and are read as zero.
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The | NDEX and Dfields specify the region information to access when an MPU region
read or write operation is performed. The Dfield specifies whether the region is a data
region or an instruction region. The | NDEX field specifies which of the 32 data or
instruction regions to access. If there are fewer than 32 instruction or 32 data regions,
unused high-order bits must be written as zero and are read as zero.

Refer to “MPU Region Read and Write Operations” on page 3-29 for more
information on MPU region read and write operations.

The mpuacc Register

The mpuacc register works in conjunction with the mpubase register to set and
retrieve MPU region information and is only available in systems with an MPU. The
nmpuacc register consists of attributes that will be set or have been retrieved which
define the MPU region. The npuacc register only holds a portion of the attributes that
define an MPU region. The remaining portion of the MPU region definition is held by
the BASE field of the npubase register.

An SOPC Builder generation-time option controls whether the npuacc register
contains a MASK or LI M T field. Table 3-25 shows the layout of the npuacc register
with the MASK field. Table 3-26 shows the layout of the npuacc register with the

LI M T field.

Table 3-25. mpuacc Control Register Fields for MASK Variation

31 30‘29‘28‘27‘26|25|24|23|22‘21‘20‘19‘18‘17‘16‘15‘14‘13‘12‘11‘10‘9|8|7|G 5 4‘3‘2 110

0

MASK (1) C| PERM [Q|g

Note to Table 3-25:
(1) This field size is variable. Unused upper bits and unused lower bits must be written as zero.

Table 3-26. mpuacc Control Register Fields for LIMIT Variation

31‘30‘29‘28‘27‘26|25|24|23|22‘21‘20‘19‘18‘17‘16‘15‘14‘13‘12‘11‘10‘9|8|7|6 5 4‘3‘2 1(0

LIMT (1) c| PERM

RD
VR

Note to Table 3-26:
(1) This field size is variable. Unused upper bits and unused lower bits must be written as zero.

Table 3-27 gives details of the fields defined in the npuacc register.

Table 3-27. mpuacc Control Register Field Descriptions (Part 1 of 2)

Field Description Access Reset Availahle
MASK (1) MASK specifies the size of the region. Read/Write 0 Only with
MPU
LIMT (7) |LIM T specifies the upper address limit of the region. Read/Write 0 Only with
MPU
C Cis the data cacheable flag. Conly applies to MPU data regions and | Read/Write 0 Only with
determines the default cacheability of a data region. When C=0, the MPU
data region is uncacheable. When C= 1, the data region is
cacheable.
PERM PERMSspecifies the access permissions for the region. Read/Write 0 Only with
MPU
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Table 3-27. mpuacc Control Register Field Descriptions (Part 2 of 2)
Field Description Access Reset Availahle
RD RDis the read region flag. When RD=1, wr ct | instructions to the Write 0 Only with
npuacc register perform a read operation. MPU
V\E WRis the write region flag. When WR=1, wr ct | instructions to the Write 0 Only with
npuacc register perform a write operation. MPU

Note to Table 3-27:
(1) The MASKand LI M T fields are mutually exclusive. Refer to Table 3-25 and Table 3-26.

The following sections provide further details of the mpuacc fields.

The MASK Field

When the amount of memory reserved for a region is defined by size, the MASK field
specifies the size of the memory region. The MASK field is the same number of bits as

the BASE field of the npubase register.

['=~ Unused high-order or low-order bits must be written as zero and are read as zero.

Table 3-28 shows the MASK field encodings for all possible region sizes in a full 31-bit

byte address space.

Table 3-28. MASK Region Size Encodings (Part 1 of 2)

MASK Encoding Region Size
OXx1FFFFFF 64 bytes
Ox1FFFFFE 128 bytes
Ox1FFFFFC 256 bytes
O0x1FFFFF8 512 bytes
Ox1FFFFFO 1KB
Ox1FFFFEO 2 KB
Ox1FFFFCO 4 KB
Ox1FFFF80 8 KB
Ox1FFFFOO 16 KB
Ox1FFFEQOO 32 KB
Ox1FFFCO0 64 KB
Ox1FFF800 128 KB
0x1FFF000 256 KB
Ox1FFEOOO 512 KB
Ox1FFC000 1 MB
Ox1FF8000 2 MB
0x1FF0000 4 MB
Ox1FEQ000 8 MB
0x1FC0000 16 MB
0x1F80000 32 MB
0x1F00000 64 MB
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Table 3-28. MASK Region Size Encodings (Part 2 of 2)

MASK Encoding Region Size
0x1E00000 128 MB
0x1C00000 256 MB
0x1800000 512 MB
0x1000000 1GB
0x0000000 2GB

Bit 31 of the npuacc register is not used by the MASK field. Because memory region
size is already a power of two, one less bit is needed. The MASK field contains the
following value, where r egi on_si ze is in bytes:

MASK = Ox1FFFFFF << | og2(region_size >> 6)

The LIMIT Field

When the amount of memory reserved for a region is defined by an upper address
limit, the LI M T field specifies the upper address of the memory region plus one. For
example, to achieve a memory range for byte addresses 0x4000 to Ox4f f f with a 256
byte minimum region size, the BASE field of the npubase register is set to 0x40
(0x4000 >> 8)and the LI M T field is set to 0x50 (0x5000 >> 8). Because the

LI M T field is one more bit than the number of bits of the BASE field of the npubase
register, bit 31 of the npuacc register is available to the LI M T field.

The C Flag

The Cflag determines the default data cacheability of an MPU region. The Cflag only
applies to data regions. For instruction regions, the Cbit must be written with 0 and is
always read as 0.

When data cacheability is enabled on a data region, a data access to that region can be
cached, if a data cache is present in the system. You can override the default
cacheability and force an address to noncacheable with an | di 0 or st i 0 instruction.

The bit 31 cache bypass feature is supported when the MPU is present. Refer to
“Cache Memory” on page 3-53 for more information on cache bypass.

The PERM Field

The PERMfield specifies the allowed access permissions. Table 3-29 shows possible
values of the PERMfield for instruction regions and Table 3-30 shows possible values
of the PERMfield for data regions.

Table 3-29. Instruction Region Permission Values

Value Supervisor Permissions User Permissions
0 None None
1 Execute None
2 Execute Execute
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Table 3-30. Data Region Permission Values

Value Supervisor Permissions User Permissions

0 None None

Read None

Read Read

Read/Write Read

1
2
4 Read/Write None
5
6

Read/Write Read/Write

Unlisted table values are reserved and must not be used. If you use reserved values,
the resulting behavior is undefined.

The RD Flag

Setting the RD flag signifies that an MPU region read operation should be performed
when awr ct| instruction is issued to the mpuacc register. Refer to “MPU Region
Read and Write Operations” on page 3-29 for more information. The RD flag always
returns 0 when read by ar dct | instruction.

The WR Flag

Setting the WR flag signifies that an MPU region write operation should be performed
when awr ct | instruction is issued to the mpuacc register. Refer to “MPU Region
Read and Write Operations” on page 3-29 for more information. The WR flag always
returns 0 when read by ar dct | instruction.

Setting both the RD and VR flags to one results in undefined behavior.

Shadow Register Sets

The Nios II processor can optionally have one or more shadow register sets. A
shadow register set is a complete alternate set of Nios II general-purpose registers,
which can be used to maintain a separate runtime context for an interrupt service
routine (ISR).

When shadow register sets are implemented, st at us. CRS indicates the register set
currently in use. A Nios II core can have up to 63 shadow register sets. If n is the
configured number of shadow register sets, the shadow register sets are numbered
from 1 to n. Register set 0 is the normal register set.

A shadow register set behaves precisely the same as the normal register set. The
register set currently in use can only be determined by examining st at us. CRS.

When shadow register sets and the EIC interface are implemented on the Nios II core,
you must ensure that your software is built with the Nios II EDS version 9.0 or later.
Earlier versions have an implementation of the er et instruction that is incompatible
with shadow register sets.

Shadow register sets are typically used in conjunction with the EIC interface. This
combination can substantially reduce interrupt latency.
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For details of EIC interface usage, refer to “Exception Processing” on page 3-30.

System software can read from and write to any shadow register set by setting
st at us. PRS and using the r dpr s and wr pr s instructions.

For details of the r dpr s and wr pr s instructions, refer to the Instruction Set Reference
chapter of the Nios II Processor Reference Handbook.

The sstatus Register

The value in the SSt at us register preserves the state of the Nios II processor during
external interrupt handling. The value of Sst at us is undefined at processor reset.
Some bits are exclusively used by and available only to certain features of the
processor. Table 3-31 shows the layout of the sst at us register.

The sst at us register is physically stored in general-purpose register r 30 in each
shadow register set. The normal register set does not have an sst at us register, but
each shadow register set has a separate Sst at us register.

Table 3-31. sstatus Control Register Fields

31 30‘29‘28‘27‘26|25|24 23 | 22 21‘20‘19‘18‘17‘16 15‘14‘13‘12‘11‘10 9|8|7|6|5‘4 3| 2|10

Reserved

PRS CRS IL

; IE Z\5 )55
Table 3-32 gives details of the fields defined in the sst at us register.
Table 3-32. sstatus Control Register Field Descriptions
Bit Description Access Reset Available
SRS SRS is the switched register set bit. The processor sets SRS to 1 Read/Write | Undefined | EIC interface
when an external interrupt occurs, if the interrupt required the and shadow
processor to switch to a different register set. register sets
only
RSI E (1) Read/Write | Undefined (1)
NM (1) Read/Write | Undefined (1)
PRS (1) Read/Write | Undefined (1)
CRS (1) Read/Write | Undefined (1)
IL (1) Read/Write | Undefined (1)
I'H (1) Read/Write | Undefined (1)
EH (1) Read/Write | Undefined (1)
u (1) Read/Write | Undefined (1)
Pl E (1) Read/Write | Undefined (1)

Note to Table 3-32:

(1) Refer to Table 3-8 on page 3-13.
(2) If the EIC interface and shadow register sets are not present SRS always reads as 0, and the processor behaves accordingly.

The sst at us register is present in the Nios II core if both the EIC interface and
shadow register sets are implemented. There is one copy of sst at us for each shadow
register set.
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When the Nios II processor takes an interrupt, if a shadow register set is requested
(RRS = 0) and the MMU is not in exception handler mode (st at us. EH=0), the
processor copies St at us to sst at us.

For details about RRS, refer to “Requested Register Set” on page 3-37. For details
about st at us. EH, refer to Table 3-35 on page 3—46.

Changing Register Sets

Modifying st at us. CRS immediately switches the Nios II processor to another
register set. However, software cannot write to st at us. CRS directly. To modify

st at us. CRS, insert the desired value into the saved copy of the st at us register, and
then execute the er et instruction, as follows:

m If the processor is currently running in the normal register set, insert the new
register set number in est at us. CRS, and execute er et .

m If the processor is currently running in a shadow register set, insert the new
register set number in sst at us. CRS, and execute er et .

Before executing er et to change the register set, system software must set individual
external interrupt masks correctly to ensure that registers in the shadow register set
cannot be corrupted. If an interrupt is assigned to the register set, system software
must ensure that one of the following conditions is true:

m The ISR is written to preserve register contents.

m The individual interrupt is disabled. The method for disabling an individual
external interrupt is specific to the EIC implementation.

Stacks and Shadow Register Sets

Depending on system requirements, the system software can create a dedicated stack
for each register set, or share a stack among several register sets. If a stack is shared,
the system software must copy the stack pointer each time the register set changes.
Use the r dpr s instruction to copy the stack register between the current register set
and another register set.

Initialization with Shadow Register Sets

At initialization, system software must carry out the following tasks to ensure correct
software functioning with shadow register sets:

m After the gp register is initialized in the normal register set, copy it to all shadow
register sets, to ensure that all code can correctly address the small data sections.

m  Copy the zer o register from the normal register set to all shadow register sets,
using the wr pr s instruction.
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Working with the MPU

This section provides a basic overview of MPU initialization and the MPU region read
and write operations.

MPU Region Read and Write Operations

MPU region read and write operations are operations that access MPU region
attributes through the npubase and npuacc control registers. The npubase. BASE,
mpuacc. MASK, npuacc. LI M T, npuacc. C, and npuacc. PERMfields comprise the
MPU region attributes.

MPU region read operations retrieve the current values for the attributes of a region.
Each MPU region read operation consists of the following actions:

m Execute aw ct | instruction to the npubase register with the npubase. | NDEX
and npubase. Dfields set to identify the MPU region.

m Execute aw ct | instruction to the mpuacc register with the npuacc. RDfield set
to one and the npuacc. WRfield cleared to zero. This action loads the npubase
and mpuacc register values.

m Executeardct!| instruction to the mpubase register to read the loaded the
npubase register value.

m Executeardct!| instruction to the mpuacc register to read the loaded the npuacc
register value.

The MPU region read operation retrieves npubase. BASE, npuacc. MASK or
mpuacc. LI M T, npuacc. C, and npuacc. PERMvalues for the MPU region.

Values for the mpubase register are not actually retrieved until the wr ct | instruction
to the npuacc register is performed.

MPU region write operations set new values for the attributes of a region. Each MPU
region write operation consists of the following actions:

m Execute aw ct | instruction to the npubase register with the npubase. | NDEX
and mpubase. Dfields set to identify the MPU region.

m Execute aw ct| instruction to the npuacc register with the npuacc. R field set
to one and the mpuacc. RDfield cleared to zero.

The MPU region write operation sets the values for mpubase. BASE, mpuacc. MASK
ormpuacc. LI M T, npuacc. C, and npuacc. PERMas the new attributes for the MPU
region.

Normally, awr ct | instruction flushes the pipeline to guarantee that any side effects
of writing control registers take effect immediately after the wr ct | instruction
completes execution. However, w ct | instructions to the npubase and npuacc
control registers do not automatically flush the pipeline. Instead, system software is
responsible for flushing the pipeline as needed (either by using a f | ushp instruction
orawr ct | instruction to a register that does flush the pipeline). Because a context
switch typically requires reprogramming the MPU regions for the new thread,
flushing the pipeline on each wr ct | instruction would create unnecessary overhead.
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Your system software must provide a data structure that contains the region
information described in “Memory Regions” on page 3-9 for each active thread. The
data structure ideally contains two 32-bit values that correspond to the mpubase and
mpuacc register formats.

The MPU is disabled on system reset. Before enabling the MPU, Altera recommends
initializing all MPU regions. Enable desired instruction and data regions by writing
each region’s attributes to the npubase and npuacc registers as described in “MPU
Region Read and Write Operations” on page 3-29. You must also disable unused
regions. When using region size, clear npuacc. MASK to zero. When using limit, set
the npubase. BASE to a nonzero value and clear npuacc. LI M T to zero.

You must enable at least one instruction and one data region, otherwise unpredictable
behavior might occur.

To perform a context switch, use awr ct | to write a zero to the PE field of the confi g
register to disable the MPU, define all MPU regions from the new thread’s data
structure, and then use another wr ct | to write a one to conf i g. PE to enable the
MPU.

Define each region using the pair of wr ct | instructions described in “MPU Region
Read and Write Operations” on page 3-29. Repeat this dual wr ct | instruction
sequence until all desired regions are defined.

Debugger Access

The debugger can access all MPU-related control registers using the normal wr ct |
and rdct | instructions. During debugging, the Nios Il ignores the MPU, effectively
temporarily disabling it.

Exception Processing

Terminology

Exception processing is the act of responding to an exception, and then returning, if
possible, to the pre-exception execution state.

All Nios II exceptions are precise. Precise exceptions enable the system software to
re-execute the instruction, if desired, after handling the exception.

Altera Nios II documentation uses the following terminology to discuss exception
processing:

m  Exception—a transfer of control away from a program’s normal flow of execution,
caused by an event, either internal or external to the processor, which requires
immediate attention.

m Interrupt—an exception caused by an explicit request signal from an external
device; also: hardware interrupt.

m Interrupt controller—hardware that interfaces the processor to interrupt request
signals from external devices.
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m Internal interrupt controller—the nonvectored interrupt controller that is integral
to the Nios II processor. The internal interrupt controller is available in all
revisions of the Nios II processor.

m Vectored interrupt controller (VIC)—an Altera-provided external interrupt
controller.

m  Exception (interrupt) latency—The time elapsed between the event that causes the
exception (assertion of an interrupt request) and the execution of the first
instruction at the handler address.

m  Exception (interrupt) response time—The time elapsed between the event that
causes the exception (assertion of an interrupt request) and the execution of
nonoverhead exception code, that is, specific to the exception type (device).

m Global interrupts—All maskable exceptions on the Nios II processor, including
internal interrupts and maskable external interrupts, but not including
nonmaskable interrupts.

m  Worst-case latency—The value of the exception (interrupt) latency, assuming the
maximum disabled time or maximum masked time, and assuming that the
exception (interrupt) occurs at the beginning of the masked /disabled time.

B Maximum disabled time—The maximum amount of continuous time that the
system spends with maskable interrupts disabled.

B Maximum masked time—The maximum amount of continuous time that the
system spends with a single interrupt masked.

m Shadow register set—a complete alternate set of Nios II general-purpose registers,
which can be used to maintain a separate runtime context for an ISR.

Exception Overview
Each of the Nios II exceptions falls into one of the following categories:

m  Reset exception—Occurs when the Nios II processor is reset. Control is transferred
to the reset address configured when the Nios II processor is instantiated.

m Break exception—Occurs when the JTAG debug module requests control. Control
is transferred to the break address configured when the Nios II processor is
instantiated.

m Interrupt exception—Occurs when a peripheral device signals a condition
requiring service

m Instruction-related exception—Occurs when any of several internal conditions
occurs, as detailed in Table 3-33 on page 3-32.

Table 3-33 shows all possible Nios II exceptions in order of highest to lowest priority.
The following table columns specify information for the exceptions:

m Exception—Gives the name of the exception.
m Type—Specifies the exception type.
m Available—Specifies when support for that exception is present.

m  Cause—Specifies the value of the CAUSE field of the except i on register, for
exceptions that write the except i on. CAUSE field.
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m Address—Specifies the instruction or data address associated with the exception.

m  Vector—Specifies which exception vector address the processor passes control to
when the exception occurs.

Table 3-33. Nios Il Exceptions (In Decreasing Priority Order) (Part 1 of 2)

Exception Type Available Cause Address Vector
Reset Reset Always 0 Reset
Hardware Break Break Always — Break
Processor-only Reset Reset Always 1 Reset
Request
Internal Interrupt Interrupt Internal 2 ea—4 (2) General exception
interrupt
controller
External nonmaskable Interrupt External — ea—4 (2) Requested handler
interrupt interrupt address (3)
controller
interface
External maskable interrupt | Interrupt External 2 ea—4 (2) Requested handler
interrupt address (3)
controller
interface
Supervisor-only Instruction | Instruction-related | MMU 9 ea—4 (2) General exception
Address (1)
Fast TLB Miss Instruction-related | MMU 12 pt eaddr. VPN, | Fast TLB Miss
(instruction) (1) ea—4 (2) exception
Double TLB Miss Instruction-related | MMU 12 pt eaddr . VPN, | General exception
(instruction) (7) ea—4 (2)
TLB Permission Violation Instruction-related | MMU 13 pt eaddr . VPN, | General exception
(execute) (1) ea—4 (2)
MPU Region Violation Instruction-related | MPU 16 ea—4 (2) General exception
(instruction) (7)
Supervisor-only Instruction | Instruction-related | MMU or MPU 10 ea—4 (2) General exception
Trap Instruction Instruction-related | Always 3 ea—4 (2) General exception
lllegal Instruction Instruction-related | Illegal ea—4 (2) General exception
instruction
detection on,
MMU, or MPU
Unimplemented Instruction | Instruction-related | Always 4 ea—4 (2) General exception
Break Instruction Instruction-related | Always — ba-4 (2) Break
Supervisor-only Data Instruction-related | MMU 11 badaddr (data General exception
Address address)
Misaligned Data Address Instruction-related | Illegal memory |6 badaddr (data General exception
access address)
detection on,
MMU, or MPU
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Table 3-33. Nios Il Exceptions (In Decreasing Priority Order) (Part 2 of 2)

Exception Type Available Cause Address Vector
Misaligned Destination Instruction-related | lllegal memory |7 badaddr General exception
Address access (destination

detection on, address)
MMU, or MPU
Division Error Instruction-related | Division error 8 ea—4 (2) General exception
detection on
Fast TLB Miss (data) Instruction-related | MMU 12 pt eaddr. VPN, | Fast TLB Miss
badaddr (data exception
address)
Double TLB Miss (data) Instruction-related | MMU 12 pt eaddr . VPN, | General exception
badaddr (data
address)
TLB Permission Violation Instruction-related | MMU 14 pt eaddr . VPN, | General exception
(read) badaddr (data
address)
TLB Permission Violation Instruction-related | MMU 15 pt eaddr . VPN, | General exception
(write) badaddr (data
address)
MPU Region Violation Instruction-related | MPU 17 badaddr (data General exception
(data) address)

Notes to Table 3-33:

(1) Itis possible for any instruction fetch to cause this exception.

(2) Refer to Table 3-6 on page 3—12 for descriptions of the ea and ba registers.

(3) For adescription of the requested handler address, refer to “Requested Handler Address” on page 3-36.

Exception Latency

Exception latency specifies how quickly the system can respond to an exception.
Exception latency depends on the type of exception, the software and hardware

configuration, and the processor state.

Interrupt Latency

The interrupt controller can mask individual interrupts. Each interrupt can have a

different maximum masked time. The worst-case interrupt latency for interrupt i is
determined by that interrupt’s maximum masked time, or by the maximum disabled
time, whichever is greater.

Reset Exceptions

When a processor reset signal is asserted, the Nios II processor performs the following
steps:

1. Sets st at us. RSI Eto 1, and clears all other fields of the st at us register.

2. Invalidates the instruction cache line associated with the reset vector.

3. Begins executing the reset handler, located at the reset vector.

['=~ All noninterrupt exception handlers must run in the normal register set.
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Clearing the st at us. Pl E field disables maskable interrupts. If the MMU or MPU is
present, clearing the st at us. Ufield forces the processor into supervisor mode.

Nonmaskable interrupts (NMls) are not affected by st at us. Pl E, and can be taken
while processing a reset exception.

Invalidating the reset cache line guarantees that instruction fetches for reset code
comes from uncached memory.

Aside from the instruction cache line associated with the reset vector, the contents of
the cache memories are indeterminate after reset. To ensure cache coherency after
reset, the reset handler located at the reset vector must immediately initialize the
instruction cache. Next, either the reset handler or a subsequent routine should
proceed to initialize the data cache.

The reset state is undefined for all other system components, including but not
limited to:

m  General-purpose registers, except for zer o (r 0) in the normal register set, which is
permanently zero.

m  Control registers, except for st at us. st at us. RSI Eis reset to 1, and the
remaining fields are reset to 0.

m Instruction and data memory.

m Cache memory, except for the instruction cache line associated with the reset
vector.

m Peripherals. Refer to the appropriate peripheral data sheet or specification for reset
conditions.

m Custom instruction logic. Refer to the Nios II Custom Instruction User Guide for reset
conditions.

m  Nios II C-to-hardware (C2H) acceleration compiler logic.

Break Exceptions

Nios Il Processor Reference Handbook

A break is a transfer of control away from a program’s normal flow of execution for
the purpose of debugging. Software debugging tools can take control of the Nios II
processor via the JTAG debug module.

Break processing is the means by which software debugging tools implement debug
and diagnostic features, such as breakpoints and watchpoints. Break processing is a
type of exception processing, but the break mechanism is independent from general
exception processing. A break can occur during exception processing, enabling debug
tools to debug exception handlers.

The processor enters the break processing state under either of the following
conditions:

m  The processor executes the br eak instruction. This is often referred to as a
software break.

m The JTAG debug module asserts a hardware break.
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Processing a Break

A break causes the processor to take the following steps:
1. Stores the contents of the st at us register to bst at us.

2. Clears st at us. Pl E to zero, disabling maskable interrupts.

'~ Nonmaskable interrupts (NMIs) are not affected by st at us. Pl E, and can
be taken while processing a break exception.

3. Writes the address of the instruction following the break to the ba register (r 30) in
the normal register set.

4. Clears st at us. Uto zero, forcing the processor into supervisor mode, when the
system contains an MMU or MPU.

5. Sets st at us. EHto one, indicating the processor is handling an exception, when
the system contains an MMU.

6. Copies st at us. CRSto st at us. PRS and then sets st at us. CRS to 0.

7. Transfers execution to the break handler, stored at the break vector specified at
system generation time.

All noninterrupt exception handlers, including the break handler, must run in the
normal register set.

Register Usage

The bst at us control register and general-purpose registers bt (r 25) and ba (r 30) in
the normal register set are reserved for debugging. Code is not prevented from
writing to these registers, but debug code might overwrite the values. The break
handler can use bt (r 25) to help save additional registers.

Returning From a Break

After processing a break, the break handler releases control of the processor by
executing a br et instruction. The br et instruction restores st at us by copying the
contents of bst at us and returns program execution to the address in the ba register
(r 30) in the normal register set. Aside from bt and ba, all registers are guaranteed to
be returned to their pre-break state after returning from the break handler.

Interrupt Exceptions

A peripheral device can request an interrupt by asserting an interrupt request (IRQ)
signal. IRQs interface to the Nios II processor through an interrupt controller. You can
configure the Nios II processor with either of the following interrupt controller
options:

m The external interrupt controller interface

m The internal interrupt controller
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External Interrupt Controller Interface

The Nios II EIC interface enables you to connect the Nios II processor to an external
interrupt controller component. The EIC can monitor and prioritize IRQ signals, and
determine which interrupt to present to the Nios II processor. An EIC can be
software-configurable.

The Nios II processor does not depend on any particular implementation of an EIC.
The degree of EIC configurability, and EIC configuration methods, are
implementation-specific. This section discusses the EIC interface, and general features
of EICs. For usage details, refer to the documentation for the specific EIC in your
system.

-o For a typical EIC implementation, refer to the Vectored Interrupt Controller chapter in
the Embedded Peripherals IP User Guide.

When an IRQ is asserted, the EIC presents the following information to the Nios II
processor:

m  The requested handler address (RHA)—Refer to “Requested Handler Address”
m The requested interrupt level (RIL)—Refer to “Requested Interrupt Level”
m The requested register set (RRS)—Refer to “Requested Register Set”

B Requested nonmaskable interrupt (RNMI) mode—Refer to “Requested NMI
Mode”

The Nios II processor EIC interface connects to a single EIC, but an EIC can support a
daisy-chained configuration. In a daisy-chained configuration, multiple EICs can
monitor and prioritize interrupts. The EIC directly connected to the processor
presents the processor with the highest-priority interrupt from all EICs in the daisy
chain.

An EIC component can support an arbitrary level of daisy-chaining, potentially
allowing the Nios II processor to handle an arbitrary number of prioritized interrupts.

Requested Handler Address

The RHA specifies the address of the handler associated with the interrupt. The
availability of an RHA for each interrupt allows the Nios II processor to jump directly
to the interrupt handler, reducing interrupt latency.

The RHA for each interrupt is typically software-configurable. The method for
specifying the RHA is dependent on the specific EIC implementation.

If the Nios II processor is implemented with an MMU, the processor treats handler

addresses as virtual addresses.

Requested Interrupt Level

The Nios II processor uses the RIL to decide when to take a maskable interrupt. The
interrupt is taken only when the RIL is greater than st at us. | L.

The RIL is ignored for nonmaskable interrupts.
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Requested Register Set

If shadow register sets are implemented on the Nios II core, the EIC specifies a
register set when it asserts an interrupt request. When it takes the interrupt, the
Nios II processor switches to the requested register set. When an interrupt has a
dedicated register set, the interrupt handler avoids the overhead of saving registers.

The method of assigning register sets to interrupts depends on the specific EIC
implementation. Register set assignments can be software-configurable.

Multiple interrupts can be configured to share a register set. In this case, the interrupt
handlers must be written so as to avoid register corruption. For example, one of the
following conditions must be true:

m The interrupts cannot pre-empt one another. For example, all interrupts are at the
same level.

m Registers are saved in software. For example, each interrupt handler saves its own
registers on entry, and restores them on exit.

Typically, the Nios II processor is configured so that when it takes an interrupt, other
interrupts in the same register set are disabled. If interrupt preemption within a
register set is desired, the interrupt handler can re-enable interrupts in its register set.

By default, the Nios II processor disables maskable interrupts when it takes an
interrupt request. To enable nested interrupts, system software or the ISR itself must
re-enable interrupts after the interrupt is taken.

Alternatively, to take full advantage of nested interrupts with shadow register sets,
system software can set the confi g. ANl flag. When confi g. ANl =1, the Nios II
processor leaves maskable interrupts enabled after it takes an interrupt.

Requested NMI Mode

Any interrupt can be nonmaskable, depending on the configuration of the EIC. An
NMI typically signals a critical system event requiring immediate handling, to ensure
either system stability or real-time performance.

st at us. | L and RIL are ignored for nonmaskable interrupts.

Shadow Register Sets

Although shadow register sets can be implemented independently of the EIC
interface, typically the two features are used together. Combining shadow register
sets with an appropriate EIC, you can minimize or eliminate the context switch
overhead for critical interrupts.

For the best interrupt performance, assign a dedicated register set to each of the most
time-critical interrupts. Less-critical interrupts can share register sets, provided the
ISRs are protected from register corruption as noted in “Requested Register Set”.

The method for mapping interrupts to register sets is specific to the particular EIC
implementation.
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Internal Interrupt Controller

When the internal interrupt controller is implemented, a peripheral device can
request a hardware interrupt by asserting one of the Nios II processor’s 32
interrupt-request inputs, i r g0 through i r q31. A hardware interrupt is generated if
and only if all three of these conditions are true:

m The Pl Ebit of the st at us control register is one.
® An interrupt-request input, i r qn, is asserted.
m  The corresponding bit  of the i enabl e control register is one.

Upon hardware interrupt, the processor clears the Pl E bit to zero, disabling further
interrupts, and performs the other steps outlined in “Exception Processing Flow” on
page 3—43.

The value of the i pendi ng control register shows which interrupt requests (IRQ) are
pending. By peripheral design, an IRQ bit is guaranteed to remain asserted until the
processor explicitly responds to the peripheral. Figure 3-2 shows the relationship
between i pendi ng, i enabl e, Pl E, and the generation of an interrupt.

I'=~ Although shadow register sets can be implemented in any Nios II/f processor, the

internal interrupt controller does not have features to take advantage of it as external
interrupt controllers do.

Figure 3-2. Relationship Between ienable, ipending, PIE and Hardware Interrupts
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Instruction-Related Exceptions

Instruction-related exceptions occur during execution of Nios II instructions and
perform the steps outlined in “Exception Processing Flow” on page 3-43.

The Nios II processor generates the following instruction-related exceptions.
m Trap instruction

m Break instruction

m Unimplemented instruction

m lllegal instruction

m Supervisor-only instruction

m Supervisor-only instruction address
m Supervisor-only data address

m Misaligned data address

m Misaligned destination address

m Division error

m Fast TLB miss

m Double TLB miss

m TLB permission violation

m MPU region violation
['=~ All noninterrupt exception handlers must run in the normal register set.

Trap Instruction

When a program issues the t r ap instruction, it generates a software trap exception. A
program typically issues a software trap when the program requires servicing by the
operating system. The general exception handler for the operating system determines
the reason for the trap and responds appropriately.

Break Instruction

The break instruction is treated as a break exception. Refer to “Break Exceptions” on
page 3-34 for details.

Unimplemented Instruction

When the processor issues a valid instruction that is not implemented in hardware, an
unimplemented instruction exception is generated. The general exception handler
determines which instruction generated the exception. If the instruction is not
implemented in hardware, control is passed to an exception routine that might choose
to emulate the instruction in software. Refer to “Potential Unimplemented
Instructions” on page 3-59 for more information.

© July 2010 Altera Corporation Nios Il Processor Reference Handbook



Chapter 3: Programming Model
Exception Processing

lllegal Instruction

Illegal instructions are instructions with an undefined opcode or opcode-extension
field. The Nios II processor can check for illegal instructions and generate an
exception when an illegal instruction is encountered. When your system contains an
MMU or MPU, illegal instruction checking is always on. When no MMU or MPU is
present, you have the option to have the processor check for illegal instructions.

To see how to control this option, refer to the Instantiating the Nios II Processor in SOPC
Builder chapter of the Nios 1I Processor Reference Handbook.

When the processor issues an instruction with an undefined opcode or
opcode-extension field, and illegal instruction exception checking is turned on, an
illegal instruction exception is generated.

Refer to the OP Encodings and OPX Encodings for R-Type Instructions tables in the
Instruction Set Reference chapter of the Nios II Processor Reference Handbook to see the
unused opcodes and opcode extensions.

All undefined opcodes are reserved. The processor does occasionally use some
undefined encodings internally. Executing one of these undefined opcodes does not
trigger an illegal instruction exception. Refer to the Nios II Core Implementation Details
chapter of the Nios 1I Processor Reference Handbook for details on each specific Nios II
core.

Supervisor-only Instruction

When your system contains an MMU or MPU and the processor is in user mode
(status. U = 1), executing a supervisor-only instruction results in a supervisor-only
instruction exception. The supervisor-only instructions arei nitd,i niti, eret,
bret,rdctl,andwctl.

This exception is implemented only in Nios II processors configured to use supervisor
mode and user mode. Refer to “Operating Modes” on page 3-2 for more information.

Supervisor-only Instruction Address

When your system contains an MMU and the processor is in user mode (st at us. U =
1), attempts to access a supervisor-only instruction address result in a supervisor-only
instruction address exception. Any instruction fetch can cause this exception. For
definitions of supervisor-only address ranges, refer to Table 3-2 on page 3-5.

This exception is implemented only in Nios II processors that include the MMU.

Supervisor-only Data Address

When your system contains an MMU and the processor is in user mode (st at us. U =
1), any attempt to access a supervisor-only data address results in a supervisor-only
data address exception. Instructions that can cause a supervisor-only data address
exception are all loads, all stores, and f | ushda.

This exception is implemented only in Nios II processors that include the MMU.
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Misaligned Data Address

The Nios II processor can check for misaligned data addresses of load and store
instructions and generate an exception when a misaligned data address is
encountered. When your system contains an MMU or MPU, misaligned data address
checking is always on. When no MMU or MPU is present, you have the option to have
the processor check for misaligned data addresses.

To see how to control this option, refer to the Instantiating the Nios II Processor in SOPC
Builder chapter of the Nios 1I Processor Reference Handbook.

A data address is considered misaligned if the byte address is not a multiple of the
width of the load or store instruction data width (four bytes for word, two bytes for
half-word). Byte load and store instructions are always aligned so never take a
misaligned address exception.

Misaligned Destination Address

The Nios II processor can check for misaligned destination addresses of the cal | r,

j mp,ret,eret,bret,and all branch instructions and generate an exception when a
misaligned destination address is encountered. When your system contains an MMU
or MPU, misaligned destination address checking is always on. When no MMU or
MPU is present, you have the option to have the processor check for misaligned
destination addresses.

To see how to control this option, refer to the I[nstantiating the Nios II Processor in SOPC
Builder chapter of the Nios II Processor Reference Handbook.

A destination address is considered misaligned if the target byte address of the
instruction is not a multiple of four.

Division Error

The Nios II processor can check for division errors and generate an exception when a
division error is encountered.

To see how to control this option, refer to the Instantiating the Nios II Processor in SOPC
Builder chapter of the Nios II Processor Reference Handbook.

The division error exception detects divide instructions that produce a quotient that
can't be represented. The two cases are divide by zero and a signed division that
divides the largest negative number -2147483648 (0x80000000) by -1 (Oxffffttff).
Division error detection is only available if divide instructions are supported by
hardware.
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Fast TLB Miss

Fast TLB miss exceptions are implemented only in Nios II processors that include the
MMU. The MMU has a special exception vector (fast TLB miss), specified in SOPC
Builder at system generation time, specifically to handle TLB miss exceptions quickly.
Whenever the processor cannot find a TLB entry matching the VPN (optionally
extended by a process identifier), the result is a TLB miss exception. At the time of the
exception, the processor first checks st at us. EH. When st at us. EH =0, no other
exception is already in process, so the processor considers the TLB miss a fast TLB
miss, sets st at us.EHto one, and transfers control to the fast TLB miss exception
handler (rather than to the general exception handler).

There are two kinds of fast TLB miss exceptions:
m Fast TLB miss (instruction)—Any instruction fetch can cause this exception.

m Fast TLB miss (data)—Load, store, i ni t da, and f | ushda instructions can cause
this exception.

The fast TLB miss exception handler can inspect the t | bm sc.Dfield to determine
which kind of fast TLB miss exception occurred.

Double TLB Miss

Double TLB miss exceptions are implemented only in Nios II processors that include
the MMU. When a TLB miss exception occurs while software is currently processing
an exception (that is, when st at us. EH= 1), a double TLB miss exception is
generated. Specifically, whenever the processor cannot find a TLB entry matching the
VPN (optionally extended by a process identifier) and st at us. EH=1, the resultis a
double TLB miss exception. The most common scenario is that a double TLB miss
exception occurs during processing of a fast TLB miss exception. The processor
preserves register values from the original exception and transfers control to the
general exception handler which processes the newly-generated exception.

There are two kinds of double TLB miss exceptions:
m Double TLB miss (instruction)—Any instruction fetch can cause this exception.

m Double TLB miss (data)—Load, store, i ni t da, and f | ushda instructions can
cause this exception.

The general exception handler can inspect either the except i on.CAUSE or
t | bm sc.Dfield to determine which kind of double TLB miss exception occurred.

TLB Permission Violation

TLB permission violation exceptions are implemented only in Nios II processors that
include the MMU. When a TLB entry is found matching the VPN (optionally
extended by a process identifier), but the permissions do not allow the access to
complete, a TLB permission violation exception is generated.

There are three kinds of TLB permission violation exceptions:

m TLB permission violation (execute)—Any instruction fetch can cause this
exception.

m TLB permission violation (read)—Any load instruction can cause this exception.

m TLB permission violation (write)—Any store instruction can cause this exception.
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The general exception handler can inspect the except i on.CAUSE field to determine
which permissions were violated.

The data cache management instructions (i ni t d,i ni t da, f| ushd, and f | ushda)
ignore the TLB permissions and do not generate TLB permission violation exceptions.

MPU Region Violation

MPU region violation exceptions are implemented only in Nios II processors that
include the MPU. An MPU region violation exception is generated under any of the
following conditions:

B An instruction fetch or data address matched a region but the permissions for that
region did not allow the action to complete.

®m  An instruction fetch or data address did not match any region.

The general exception handler reads the MPU region attributes to determine if the
address did not match any region or which permissions were violated.

There are two kinds of MPU region violation exceptions:

m MPU region violation (instruction)—Any instruction fetch can cause this
exception.

m MPU region violation (data)—Load, store, i ni t da, and f | ushda instructions can
cause this exception.

The general exception handler can inspect the except i on.CAUSE field to determine
which kind of MPU region violation exception occurred.

Other Exceptions

The preceding sections describe all of the exception types defined by the Nios II
architecture at the time of publishing. However, some processor implementations
might generate exceptions that do not fall into the categories listed in the preceding
sections. Therefore, a robust exception handler must provide a safe response (such as
issuing a warning) in the event that it cannot identify the cause of an exception.

Exception Processing Flow

© July 2010

Except for the break exception (refer to “Processing a Break” on page 3-35), this
section describes how the processor responds to exceptions, including interrupts and
instruction-related exceptions.

For a detailed discussion of writing programs to take advantage of exception and
interrupt handling, refer to the Exception Handling chapter of the Nios II Software
Developer’s Handbook.
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Processing General Exceptions

The general exception handler is a routine that determines the cause of each exception
(including the double TLB miss exception), and then dispatches an exception routine
to respond to the exception. The address of the general exception handler, specified in
SOPC Builder at system generation time, is called the exception vector in the Nios II
Megawizard interface. At run time this address is fixed, and software cannot modify
it. Programmers do not directly access exception vectors, and can write programs
without awareness of the address.

If the EIC interface is present, the general exception handler processes only
noninterrupt exceptions.

The fast TLB miss exception handler only handles the fast TLB miss exception. It is
built for speed to process TLB misses quickly. The fast TLB miss exception handler
address, specified in SOPC Builder at system generation time, is called the fast TLB
miss exception vector in the Nios Il Megawizard interface.

Exception Flow with the EIC Interface

If the EIC interface is present, interrupt processing differs markedly from
noninterrupt exception processing. The EIC interface provides the following
information to the Nios II processor for each interrupt request:

m RHA—The requested handler address for the interrupt handler assigned to the
requested interrupt.

B RRS—The requested register set to be used when the interrupt handler executes. If
shadow register sets are not implemented, RRS must always be 0.

m RIL—The requested interrupt level specifies the priority of the interrupt.

m RNMI—The requested NMI flag specifies whether to treat the interrupt as
nonmaskable.

For further information about the RHA, RRS, RIL and RNM]I, refer to “The Nios II/f
Core” in the Nios II Core Implementation Details chapter of the Nios II Processor Reference
Handbook.

When the EIC interface presents an interrupt to the Nios II processor, the processor
uses several criteria, as follows, to determine whether to take the interrupt:

m Nonmaskable interrupts—The processor takes any NMI as long as it is not
processing a previous NMIL

m Maskable interrupts—The processor takes a maskable interrupt if maskable
interrupts are enabled, and if the requested interrupt level is higher than that of
the interrupt currently being processed (if any). However, if shadow register sets
are implemented, the processor takes the interrupt only if the interrupt requests a
register set different from the current register set, or if the register set interrupt
enable flag (st at us. RSI E) is set.

Table 3-34 summarizes the conditions under which the Nios II processor takes an
external interrupt.

Nios Il Processor Reference Handbook © July 2010 Altera Corporation


http://www.altera.com/literature/hb/nios2/n2cpu_nii51015.pdf

Chapter 3: Programming Model

Exception Processing

Tahle 3-34. Conditions Required to Take External Interrupt

3-45

RNMI ==1 RNMI ==0
status.NMI | status.NMI status.PIE status.PIE ==
== == RIL <= RIL > status.IL
status.IL Processor Has Shadow Register Sets No Shadow
RRS == status.CRS RRS != Register
status.RSIE | status.RSIE | Status.CRS Sets
Yes No No No No (7) Yes Yes Yes

Note to Table 3-34:

(1) Nested interrupts using the same register set are allowed only if system software has explicitly permitted them by setting st at us. RSI E.
This restriction ensures that such interrupts are taken only if the handler is coded to save the register context.

© July 2010 Altera Corporation

The Nios II processor supports fast nested interrupts with shadow register sets, as
described in “Shadow Register Sets” on page 3-26. When shadow register sets are
implemented, the confi g. ANl field is set to 0 at reset.

Software must set confi g. ANl to 1 to enable fast nested interrupts. If conf i g. ANI
is set to 1 when a maskable external interrupt occurs, st at us. Pl Enot cleared.
Leaving st at us. Pl E set allows higher level interrupts to be taken immediate,
without requiring the interrupt handler to set st at us. Pl Eto 1.

System software can disable fast nested interrupts by setting conf i g. ANl to 0. In this
state, the processor disables maskable interrupts when taking an exception, just as it
does without shadow register sets. An individual interrupt handler can re-enable
interrupts by setting st at us. Pl E to 1, if desired.

Exception Flow with the Internal Interrupt Controller

A general exception handler determines which of the pending interrupts has the
highest priority, and then transfers control to the appropriate ISR. The ISR stops the
interrupt from being visible (either by clearing it at the source or masking it using

i enabl e) before returning and/or before re-enabling Pl E. The ISR also saves

est at us and ea (r 29) before re-enabling Pl E.

Interrupts can be re-enabled by writing one to the Pl E bit, thereby allowing the
current ISR to be interrupted. Typically, the exception routine adjusts i enabl e so that
IRQs of equal or lower priority are disabled before re-enabling interrupts. Refer to
“Handling Nested Exceptions” on page 3—48 for more information.

Exceptions and Processor Status

Table 3-35 lists all changes to the Nios II processor state as a result of nonbreak
exception processing actions performed by hardware. For systems with an MMU,
st at us. EHindicates whether or not exception processing is already in progress.
When st at us. EH= 1, exception processing is already in progress and the states of
the exception registers are preserved to retain the original exception states.
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Tahle 3-35. Nios Il Processor Status After Taking Exception

System Status Before Taking Exception

External Interrupt Asserted (7) Internal Interrupt Asserted or Noninterrupt Exception
status.EH==1 (2) status.EH== status.EH== status.EH==0
TLB Miss No TLB Miss
(4)
TLB
Permission No TLB

Processor Status || RRS==0 Violation | Permission

Register or Field (3) RRS!=0 | RRS== RRS!=0 (4) Violation
pt eaddr . VPN (5) No change VPN (6) No change
status. PRS (3) No change st at us. CRS No change

(3) (7)
pc RHA General Fast TLB | General exception vector(3)
exception | exception
vector (8) | vector (9)
sstatus (10) (11) No change st at us No change
(7) (12)
estatus (11) No change status No change status (7)
(7)

ea No change return address (713) ‘ No change return address
tlbmisc.D(2) No change (14)
tl bmisc. DBL (2) No change (15)
t1bmi sc. PERM No change (16)

()
tl bmi sc. BAD(2) No change (17)
status. PIE config. ANl (18) 0(19)
status. EH(2) No change 1 (20)
status. | H(21) 1 No change
status. NM (21) RNMI No change
status.IL (21) RIL No change
status. RSIE 0 No change
(3)(21)
stat us. CRS (3) RRS No change
status. U(2) 0(22)

Notes to Table 3-35: (Part 1 of 2)

accordingly.

Nios Il Processor Reference Handbook

If the Nios Il processor does not have an EIC interface, external interrupts do not occur.
If the Nios Il processor does not have an MMU, this field is not implemented. Its value is always 0, and the processor behaves accordingly.
If the Nios Il processor does not have shadow register sets, this field is not implemented. Its value is always 0, and the processor behaves

If the Nios Il processor does not have an MMU, TLB-related exceptions do not occur.
If the Nios Il processor does not have an MMU, this register is not implemented.
The VPN of the address triggering the exception
The pre-exception value
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Notes to Table 3-35: (Part 2 of 2)

(8) Invokes the general exception handler
(9) Invokes the fast TLB miss exception handler

(10) If the Nios Il processor does not have shadow register sets, this register is not implemented.

(11) Saves the processor’s pre-exception status

(12) sst at us. SRSis set to 1 if RRS is not equal to st at us. CRS.

(13) The address following the instruction being executed when the exception occurs

(14) Set to 1 on a data access exception, set to 0 otherwise

(15) Set to 1 on a double TLB miss, set to 0 otherwise

(16) Set to 1 on a TLB permission violation, set to 0 otherwise

(17) Set to 1 on a bad virtual address exception, set to 0 otherwise

(18) Disables exceptions and nonmaskable interrupts, unless automatic nested interrupts are explicitly enabled by conf i g. ANI
(19) Disables exceptions and nonmaskable interrupts

(20) If the MMU is implemented, indicates that the processor is handling an exception.

(21) If the Nios Il processor does not have an EIC interface, this field is not implemented.

(22) Puts the processor in supervisor mode.

Determining the Cause of Interrupt and Instruction-Related Exceptions

The general exception handler must determine the cause of each exception and then
transfer control to an appropriate exception routine.

With Extra Exception Information

When you have included the extra exception information in your Nios II system, the
CAUSE field of the except i on register (refer to “The exception Register” on

page 3-15) contains a code for the highest-priority exception occurring at the time and
the BADDR field of the badaddr register (refer to “The badaddr Register” on

page 3-21) contains the byte instruction address or data address for certain
exceptions. Refer to Table 3-33 on page 3-32 for more information.

[l=" External interrupts do not set except i on.CAUSE.

To determine the cause of an exception, simply read the cause of the exception from
except i on.CAUSE and then transfer control to the appropriate exception routine.

L=~ Extra exception information is always enabled in Nios II systems containing an MMU
or MPU.

Without Extra Exception Information

When you have not included the extra exception information in your Nios II system,
your exception handler must determine the cause of exception itself. For this reason,
Altera recommends always enabling the extra exception information.

When the extra exception information is not available, use the sequence in
Example 3-3 on page 3-48 to determine the cause of an exception.
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Example 3-3. Determining Exception Cause Without Extra Exception Information

/* Wth an internal interrupt controller, check for interrupt
exceptions. Wth an external interrupt controller, ipending is
always 0, and this check can be onitted. */

if (estatus.PIE == 1 and ipending !'= 0) {
handl e interrupt

/* Decode exception frominstruction */
/* Note: Because the exception register is included with the MW and */
/* MPU, you never need to deternm ne MMUJ or MPU exceptions by decodi ng */
} else {
decode instruction at $ea-4
if (instruction is trap)
handl e trap exception
else if (instruction is |oad or store)
handl e m sal i gned data address exception
else if (instruction is branch, bret, callr, eret, jnp, or ret)
handl e m sal i gned destination address exception
else if (instruction is uninplenmented)
handl e uni npl enented instruction exception

else if (instruction is illegal)
handl e illegal instruction exception
else if (instruction is divide) {
if (denom nator == 0)
handl e divi sion error exception
elseif (instruction is signed divide and nunerator == 0x80000000
and denom nator == Oxffffffff)
handl e di vi sion error exception
}
}
/* Not any known exception */
} else {
handl e unknown exception (If internal interrupt controller
is inmplemented, could be spurious interrupt)
}

Handling Nested Exceptions

The Nios II processor supports several types of nested exceptions, depending on
which optional features are implemented. Nested exceptions can occur under the
following circumstances:

m  An exception handler enables maskable interrupts
m An EIC is present, and an NMI occurs

m An EIC is present, and the processor is configured to leave maskable interrupts
enabled when taking an interrupt

B An exception handler triggers an instruction-related exception

«o For details about when the Nios II processor takes exceptions, refer to “Exception
Processing Flow” on page 3-43. For details about unimplemented instructions, refer
to the Processor Architecture chapter of the Nios II Processor Reference Handbook. For
details about MMU and MPU exceptions, refer to “Instruction-Related Exceptions” on
page 3-39.
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A system can be designed to eliminate the possibility of nested exceptions. However,
if nested exceptions are possible, the exception handlers must be carefully written to
prevent each handler from corrupting the context in which a pre-empted handler
runs.

If an exception handler issues a t r ap instruction, an optional instruction, or an
instruction which could generate an MMU or MPU exception, it must save and restore
the contents of the est at us and ea registers.

Nested Exceptions with the Internal Interrupt Controller

You can enable nested exceptions in each exception handler on a case-by-case basis. If
you want to allow a given exception handler to be pre-empted, set st at us. Pl Eto 1

near the beginning of the handler. Enabling maskable interrupts early in the handler

minimizes the worst-case latency of any nested exceptions.

Il=" Ensure that all pre-empting handlers preserve the register contents.

Nested Exceptions with an External Interrupt Controller

With an EIC, handling of nested interrupts is more sophisticated than with the
internal interrupt controller. Handling of noninterrupt exceptions, however, is the
same.

When individual external interrupts have dedicated shadow register sets, the Nios II
processor supports fast interrupt handling with no overhead for saving register
contents. To take full advantage of fast interrupt handling, system software must set
up certain conditions. With the following conditions satisfied, ISRs need not save and
restore register contents on entry and exit:

B Automatic nested interrupts are enabled (confi g. ANl is set to 1).
m  Each interrupt is assigned to a dedicated shadow register set
m  All interrupts with the same RIL are assigned to dedicated shadow register sets.

m  Multiple interrupts with different RILs can be assigned to a single shadow register
set. However, with multiple register sets, you must not allow the RILs assigned to
one shadow register set to overlap the RILs assigned to another register set.

Table 3-36 and Table 3-37 illustrate the validity of register set assignments when
preemption within a register set is enabled.

Table 3-36. Example of lllegal RIL Assignment

RIL Register Set 1 Register Set 2
1 IRQO
2 IRQ1
3 IRQ2
4 IRQ3
5 IRQ4
6 IRQ5
7 IRQ6
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Table 3-37. Example of Legal RIL Assignment

RIL Register Set 1 Register Set 2
1 IRQO
2 IRQ1
3 IRQ3
4 IRQ2
5 IRQ4
6 IRQ5
7 IRQ6

"=~ Noninterrupt exception handlers must always save and restore the register contents,
because they run in the normal register set.

Multiple interrupts can share a register set, with some loss of performance. There are
two techniques for sharing register sets:

m Setstatus. RSI Eto 0. When an ISR is running in a given register set, the
processor does not take any maskable interrupt assigned to the same register set.
Such interrupts must wait for the running ISR to complete, regardless of their
interrupt level.

=~ This technique can result in a priority inversion.

m  Ensure that each ISR saves and restores registers on entry and exit, and set
st at us. RSI E to 1 after registers are saved. When an ISR is running in a given
register set, the processor takes an interrupt in the same register set if it has a
higher interrupt level.

System software can globally disable fast nested interrupts by setting conf i g. ANl to
0. In this state, the Nios II processor disables interrupts when taking a maskable
interrupt (nonmaskable interrupts always disable maskable interrupts). Individual
ISRs can re-enable nested interrupts by setting st at us. Pl E to 1, as described in
“Nested Exceptions with the Internal Interrupt Controller” on page 3-49.

Handing Nonmaskable Interrupts

Writing an NMI handler involves the same basic techniques as writing any other
interrupt handler. However, nonmaskable interrupts always pre-empt maskable
interrupts, and cannot be pre-empted. This can simplify handler design in some ways,
but it means that an NMI handler can have a significant impact on overall interrupt
latency. For the best system performance, perform the absolute minimum of
processing in your NMI handlers, and defer less-critical processing to maskable
interrupt handlers or foreground software.

NMIs leave intact the processor state associated with maskable interrupts and other
exceptions, as well as normal, nonexception processing, provided each NMI is
assigned to a dedicated shadow register set. Therefore NMIs can be handled
transparently.
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If not assigned to a dedicated shadow register set, an NMI can overwrite the
processor status associated with exception processing, making it impossible to return
to the interrupted exception.

Do not set st at us. Pl E in a nonmaskable ISR. If st at us. Pl Eis set, a maskable
interrupt can pre-empt an NMI, and the processor exits NMI mode. It cannot be
returned to NMI mode until the next nonmaskable interrupt.

Returning From Interrupt and Instruction-Related Exceptions

=)

The er et instruction is used to resume execution at the pre-exception address.

You must ensure that when an exception handler modifies registers, they are restored
when it returns. This can be taken care of in either of the following ways:

m In the case of ISRs, if the EIC interface and shadow register sets are implemented,
and the ISR has a dedicated register set, no software action is required. The Nios II
processor returns to the previous register set when it executes er et , which
restores the register contents. For details, refer to “Nested Exceptions with an
External Interrupt Controller”.

m In the case of noninterrupt exceptions, for ISRs in a system with the internal
interrupt controller, and for ISRs without a dedicated shadow register set, the
exception handler must save registers on entry and restore them on exit. Saving
the register contents on the stack is a typical, re-entrant implementation.

It is not necessary to save and restore the exception temporary (et or r 24) register.

When executing the er et instruction, the processor performs the following tasks:
1. Restores the previous contents of st at us as follows:

m Ifstatus. CRSis0, copies est at us to st at us

m If st at us. CRSis nonzero, copies Sst at us to st at us

2. Transfers program execution to the address in the ea register (r 29) in the register
set specified by the original value of st at us. CRS.

er et can cause the processor to exit NMI mode. However, it cannot make the
processor enter NMI mode. In other words, if st at us. NM is 0 and est at us. NM
(orsstatus. NM )is 1, afteraneret,status. NM isstill 0. This restriction prevents
the processor from accidentally entering NMI mode.

When the EIC interface and shadow register sets are implemented on the Nios II core,
you must ensure that your software, including ISRs, is built with the version of the
GCC compiler included in Nios II EDS version 9.0 or later. Earlier versions have an
implementation of the er et instruction that is incompatible with shadow register
sets.

Return Address Considerations

The return address requires some consideration when returning from exception
processing routines. After an exception occurs, ea contains the address of the
instruction following the point where the exception occurred.
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When returning from instruction-related exceptions, execution must resume from the
instruction following the instruction where the exception occurred. Therefore, ea
contains the correct return address.

On the other hand, hardware interrupt exceptions must resume execution from the
interrupted instruction itself. In this case, the exception handler must subtract 4 from
ea to point to the interrupted instruction.

Masking and Disabling Exceptions

The Nios II processor provides several methods for temporarily turning off some or
all exceptions from software. The available methods depend on the hardware
configuration. This section discusses all potentially available methods.

Disabling Maskable Interrupts

Software can disable and enable maskable interrupts with the st at us. Pl Ebit. When
Pl E = 0, maskable interrupts are ignored. When Pl E = 1, internal and maskable
external interrupts can be taken, depending on the status of the interrupt controller.

Masking Interrupts with an External Interrupt Controller

Masking Individual Interrupts

Typical EIC implementations allow system software to mask individual interrupts.
The method of masking individual interrupts is implementation-specific.

Interrupt Levels

The st at us. | L field controls what level of external maskable interrupts can be
serviced. The processor services a maskable interrupt only if its requested interrupt
level is greater than st at us. | L.

An ISR can make run-time adjustments to interrupt nesting by manipulating
st at us. | L. For example, if an ISR is running at level 5, to temporarily allow
pre-emption by another level 5 interrupt, it can set st at us. | L to 4.

To enable all external interrupts, set st at us. | L to 0. To disable all external
interrupts, set st at us. I L to 63.

Masking Interrupts with the Internal Interrupt Controller

The i enabl e register controls the handling of internal hardware interrupts. Each bit
of the i enabl e register corresponds to one of the interrupt inputs, i r qO through

i rq31. A value of one in bit # means that the corresponding i r qn interrupt is
enabled; a bit value of zero means that the corresponding interrupt is disabled. Refer
to “Exception Processing” on page 3-30 for more information.

An ISR can adjust i enabl e so that IRQs of equal or lower priority are disabled. Refer
to “Handling Nested Exceptions” on page 3-48 for more information.

Memory and Peripheral Access

Nios II addresses are 32 bits, allowing access up to a 4 gigabyte address space. Nios I
core implementations without MMUS restrict addresses to 31 bits or fewer. The MMU
supports the full 32-bit physical address.
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Cache Memory

For details, refer to the Nios II Core Implementation Details chapter of the Nios II
Processor Reference Handbook.

Peripherals, data memory, and program memory are mapped into the same address
space. The locations of memory and peripherals within the address space are
determined at system generation time. Reading or writing to an address that does not
map to a memory or peripheral produces an undefined result.

The processor’s data bus is 32 bits wide. Instructions are available to read and write
byte, half-word (16-bit), or word (32-bit) data.

The Nios II architecture is little endian. For data wider than 8 bits stored in memory,
the more-significant bits are located in higher addresses.

The Nios II architecture supports register+immediate addressing.

The Nios II architecture and instruction set accommodate the presence of data cache
and instruction cache memories. Cache management is implemented in software by
using cache management instructions. Instructions are provided to initialize the
cache, flush the caches whenever necessary, and to bypass the data cache to properly
access memory-mapped peripherals.

The Nios II architecture provides the following mechanisms to bypass the cache:

m  When no MMU is present, bit 31 of the address is reserved for bit-31 cache bypass.
With bit-31 cache bypass, the address space of processor cores is 2 GB, and the
high bit of the address controls the caching of data memory accesses.

m  When the MMU is present, cacheability is controlled by the MMU, and bit 31
functions as a normal address bit. For details, refer to “Address Space and
Memory Partitions” on page 3-4, and “TLB Organization” on page 3-6.

m Cache bypass instructions, such as | dwi 0 and st wi 0.

Refer to the Nios II Core Implementation Details chapter of the Nios II Processor Reference
Handbook for details of which processor cores implement bit-31 cache bypass. Refer to
Instruction Set Reference chapter of the Nios II Processor Reference Handbook for details of
the cache bypass instructions.

Code written for a processor core with cache memory behaves correctly on a
processor core without cache memory. The reverse is not true. If it is necessary for a
program to work properly on multiple Nios II processor core implementations, the
program must behave as if the instruction and data caches exist. In systems without
cache memory, the cache management instructions perform no operation, and their
effects are benign.

For a complete discussion of cache management, refer to the Cache and Tightly Coupled
Memory chapter of the Nios II Software Developer’s Handbook.

Some consideration is necessary to ensure cache coherency after processor reset. Refer
to “Reset Exceptions” on page 3-33 for more information.
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For details on the cache architecture and the memory hierarchy refer to the Processor
Architecture chapter of the Nios II Processor Reference Handbook.

Virtual Address Aliasing

A virtual address alias occurs when two virtual addresses map to the same physical
address. When an MMU and caches are present and the caches are larger than a page
(4 KB), the operating system must prevent illegal virtual address aliases. Because the
caches are virtually-indexed and physically-tagged, a portion of the virtual address is
used to select the cache line. If the cache is 4 KB or less in size, the portion of the
virtual address used to select the cache line fits with bits 11:0 of the virtual address
which have the same value as bits 11:0 of the physical address (they are untranslated
bits of the page offset). However, if the cache is larger than 4 KB, bits beyond the page
offset (bits 12 and up) are used to select the cache line and these bits are allowed to be
different than the corresponding physical address.

For example, in a 64-KB direct-mapped cache with a 16-byte line, bits 15:4 are used to
select the line. Assume that virtual address 0x1000 is mapped to physical address
0xFO000 and virtual address 0x2000 is also mapped to physical address 0xF000.
This is an illegal virtual address alias because accesses to virtual address 0x1000 use
line 0x1 and accesses to virtual address 0x2000 use line 0x2 even though they map to
the same physical address. This results in two copies of the same physical address in
the cache. With an n-byte direct-mapped cache, there could be 11/4096 copies of the
same physical address in the cache if illegal virtual address aliases are not prevented.
The bits of the virtual address that are used to select the line and are translated bits
(bits 12 and up) are known as the color of the address. An operating system avoids
illegal virtual address aliases by ensuring that if multiple virtual addresses map the
same physical address, the virtual addresses have the same color. Note though, the
color of the virtual addresses does not need to be the same as the color as the physical
address because the cache tag contains all the bits of the PFN.

Instruction Set Categories

This section introduces the Nios II instructions categorized by type of operation
performed.

Data Transfer Instructions

The Nios II architecture is a load-store architecture. Load and store instructions
handle all data movement between registers, memory, and peripherals. Memories and
peripherals share a common address space. Some Nios II processor cores use memory
caching and/or write buffering to improve memory bandwidth. The architecture
provides instructions for both cached and uncached accesses.
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Table 3-38 describes the wide (32-bit) load and store instructions.

Table 3-38. Wide Data Transfer Instructions

Instruction

Description

| dw The | dwand st winstructions load and store 32-bit data words from/to memory. The effective address is the
Stw sum of a register's contents and a signed immediate value contained in the instruction. Memory transfers can
be cached or buffered to improve program performance. This caching and buffering might cause memory
cycles to occur out of order, and caching might suppress some cycles entirely.
Data transfers for 1/0 peripherals should use | dwi o and st wi o.
| dwi o | dwi o and st wi o instructions load and store 32-bit data words from/to peripherals without caching and
stwio buffering. Access cycles for | dwi o and st wi o instructions are guaranteed to occur in instruction order and

are never suppressed.

The data transfer instructions in Table 3-39 support byte and half-word transfers.

Table 3-39. Narrow Data Transfer Instructions

Instruction Description
| db | db, | dbu, | dhand | dhu load a byte or half-word from memory to a register. | db and | dh sign-extend
| dbu the value to 32 bits, and | dbu and | dhu zero-extend the value to 32 bits.
f;g st b and st h store byte and half-word values, respectively.
| dhu Memory accesses can be cached or buffered to improve performance. To transfer data to 1/0 peripherals,
sth use the “io” versions of the instructions, described below.
| dbi o These operations load/store byte and half-word data from/to peripherals without caching or buffering.
| dbui o
sthio
| dhi o
| dhui o
sthio

Arithmetic and Logical Instructions

Logical instructions support and, or, xor, and nor operations. Arithmetic
instructions support addition, subtraction, multiplication, and division operations.
Refer to Table 3—40.

Table 3-40. Arithmetic and Logical Instructions (Part 1 of 2)

Instruction

Description

and These are the standard 32-bit logical operations. These operations take two register values and combine
or them bit-wise to form a result for a third register.

xor

nor

andi These operations are immediate versions of the and, or, and xor instructions. The 16-bit immediate
ori value is zero-extended to 32 bits, and then combined with a register value to form the result.

Xori

andhi In these versions of and, or, and xor, the 16-bit immediate value is shifted logically left by 16 bits to form
or hi a 32-bit operand. Zeroes are shifted in from the right.

xor hi
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Table 3-40. Arithmetic and Logical Instructions (Part 2 of 2)

Instruction Description
add These are the standard 32-bit arithmetic operations. These operations take two registers as input and store
sub the result in a third register.
mul
div
di vu
addi These instructions are immediate versions of the add, sub, and mul instructions. The instruction word
subi includes a 16-bit signed value.
mul i
mul xss These instructions provide access to the upper 32 bits of a 32x32 multiplication operation. Choose the
mul xuu appropriate instruction depending on whether the operands should be treated as signed or unsigned
values. It is not necessary to precede these instructions with a nul .
mul xsu This instruction is used in computing a 128-bit result of a 64x64 signed multiplication.

Move Instructions

These instructions provide move operations to copy the value of a register or an
immediate value to another register. Refer to Table 3—41.

Table 3-41. Move Instructions

Instruction

Description

nov
nmov hi
novi

novui
novi a

nov copies the value of one register to another register. novi moves a 16-bit signed immediate value to a
register, and sign-extends the value to 32 bits. nrovui and novhi move an immediate 16-bit value into the
lower or upper 16-bits of a register, inserting zeros in the remaining bit positions. Use novi a to load a
register with an address.

Comparison Instructions

The Nios II architecture supports a number of comparison instructions. All of these
compare two registers or a register and an immediate value, and write either one (if
true) or zero to the result register. These instructions perform all the equality and
relational operators of the C programming language. Refer to Table 3-42.

Table 3-42. Comparison Instructions (Part 1 of 2)

Instruction Description
cnpeq ==
cnpne I=
cnpge signed >=
cnpgeu unsigned >=
cnpgt signed >
cnpgt u unsigned >
crpl e unsigned <=
cnpl eu unsigned <=
cnpl t signed <
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Table 3—-42. Comparison Instructions (Part 2 of 2)
Instruction Description
crmpltu unsigned <
cnpeqi These instructions are immediate versions of the comparison operations. They compare the value of

crpnei a register and a 16-bit immediate value. Signed operations sign-extend the immediate value to
cnpgei 32-bits. Unsigned operations fill the upper bits with zero.
cnpgeui
cnpgti
cnpgt ui
cnpl ei
cnpl eui
cnpl ti
cnpl tui
Shift and Rotate Instructions
The following instructions provide shift and rotate operations. The number of bits to
rotate or shift can be specified in a register or an immediate value. Refer to Table 3-43.
Table 3-43. Shift and Rotate Instructions
Instructio
n Description
rol Therol androl i instructions provide left bit-rotation. r ol i uses an immediate value to specify the number
ror of bits to rotate. The r or instructions provides right bit-rotation.
roli There is no immediate version of r or, because r ol i can be used to implement the equivalent operation.
sl | These shift instructions implement the << and >> operators of the C programming language. The sl | ,sl i,
slli srl,srli instructions provide left and right logical bit-shifting operations, inserting zeros. The sr a and
sra srai instructions provide arithmetic right bit-shifting, duplicating the sign bit in the most significant bit.
srl slli,srli andsrai useanimmediate value to specify the number of bits to shift.
srai
srli

Program Control Instructions

The Nios II architecture supports the unconditional jump and call instructions listed
in Table 3-44. These instructions do not have delay slots.

Table 3-44. Unconditional Jump and Call Instructions (Part 1 of 2)

Instruction Description

call This instruction calls a subroutine using an immediate value as the subroutine's absolute address, and
stores the return address in register r a.

callr This instruction calls a subroutine at the absolute address contained in a register, and stores the return
address in register r a. This instruction serves the roll of dereferencing a C function pointer.

ret The r et instruction is used to return from subroutines called by cal | orcal | r.r et loads and executes
the instruction specified by the address in register r a.

j mp The j np instruction jumps to an absolute address contained in a register. j np is used to implement switch

statements of the C programming language.
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Table 3-44. Unconditional Jump and Call Instructions (Part 2 of 2)

Instruction Description

j npi The j npi instruction jumps to an absolute address using an immediate value to determine the absolute
address.

or This instruction branches relative to the current instruction. A signed immediate value gives the offset of the
next instruction to execute.

The conditional-branch instructions compare register values directly, and branch if
the expression is true. Refer to Table 3—45. The conditional branches support the
equality and relational comparisons of the C programming language:

B ==and!=
B <and <= (signed and unsigned)
®m > and >= (signed and unsigned)

The conditional-branch instructions do not have delay slots.

Table 3-45. Conditional-Branch Instructions

Instruction Description

bge These instructions provide relative branches that compare two register values and branch if the
bgeu expression is true. Refer to “Comparison Instructions” on page 3-56 for a description of the
bgt relational operations implemented.

bgtu
bl e
bl eu
bl t
bltu
beq
bne

Other Control Instructions

Table 3-46 shows other control instructions.

Table 3-46. Other Control Instructions (Part 1 of 2)

Instruction Description
trap Thetrap and er et instructions generate and return from exceptions. These instructions are similar to
er et the cal | /r et pair, but are used for exceptions. t r ap saves the st at us register in the est at us

register, saves the return address in the ea register, and then transfers execution to the general exception
handler. er et returns from exception processing by restoring st at us from est at us, and executing
the instruction specified by the address in ea.

br eak The br eak and br et instructions generate and return from breaks. br eak and br et are used

br et exclusively by software debugging tools. Programmers never use these instructions in application code.
rdctl These instructions read and write control registers, such as the st at us register. The value is read from
wrct | or stored to a general-purpose register.
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Table 3-46. Other Control Instructions (Part 2 of 2)

Instruction Description

flushd These instructions are used to manage the data and instruction cache memories.

fl ushda

flushi

initd

initda

initi

flushp This instruction flushes all prefetched instructions from the pipeline. This is necessary before jumping to
recently-modified instruction memory.

sync This instruction ensures that all previously-issued operations have completed before allowing execution of
subsequent load and store operations.

rdprs These instructions read and write a general-purpose registers between the current register set and another

Wr prs register set.
wr pr s can setr O to 0 in a shadow register set. System software must use wr pr s to initialize r 0 to 0 in
each shadow register set before using that register set.

Custom Instructions

The cust ominstruction provides low-level access to custom instruction logic. The
inclusion of custom instructions is specified in SOPC Builder at system generation
time, and the function implemented by custom instruction logic is design dependent.

For further details, refer to the “Custom Instructions” section of the Processor
Architecture chapter of the Nios II Processor Reference Handbook and the Nios II Custom
Instruction User Guide.

Machine-generated C functions and assembly macros provide access to custom
instructions, and hide implementation details from the user. Therefore, most software
developers never use the cust omassembly instruction directly.

No-Operation Instruction

The Nios II assembler provides a no-operation instruction, nop.

Potential Unimplemented Instructions

© July 2010 Altera Corporation

Some Nios II processor cores do not support all instructions in hardware. In this case,
the processor generates an exception after issuing an unimplemented instruction.
Only the following instructions can generate an unimplemented instruction
exception:

= mul
m muli
m rmul xss
nmul xsu
nmul xuu

div
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m divu
®E initda

All other instructions are guaranteed not to generate an unimplemented instruction
exception.

An exception routine must exercise caution if it uses these instructions, because they
could generate another exception before the previous exception is properly handled.
Refer to “Unimplemented Instruction” on page 3-39 for more information regarding
unimplemented instruction processing.

Referenced Documents
This chapter references the following documents:
m  Nios II Software Developer’s Handbook
m  Processor Architecture chapter of the Nios II Processor Reference Handbook
m  Application Binary Interface chapter of the Nios II Processor Reference Handbook
m Instruction Set Reference chapter of the Nios II Processor Reference Handbook

m [nstantiating the Nios 1l Processor in SOPC Builder chapter of the Nios II Processor
Reference Handbook

m  Nios II Core Implementation Details chapter of the Nios II Processor Reference
Handbook

m  Exception Handling chapter of the Nios 1I Software Developer’s Handbook

m  Cache and Tightly Coupled Memory chapter of the Nios II Software Developer’s
Handbook

m  Vectored Interrupt Controller chapter in the Embedded Peripherals IP User Guide

m  Nios II Custom Instruction User Guide

Document Revision History

Table 3-47 shows the revision history for this document.

Table 3-47. Document Revision History (Part 1 of 2)

Date & Document
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v10.0.0
November 2009 m Added external interrupt controller interface information. Added shadow register sets
v9.1.0 = Added shadow register set information. and external interrupt

controller support

March 2009 Maintenance release. —
v9.0.0
November 2008 Maintenance release. —
v8.1.0
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Table 3—47. Document Revision History (Part 2 of 2)

Date & Document
Version Changes Made Summary of Changes
May 2008 Added text to describe the MMU, MPU, and advanced exceptions. Added MMU, MPU, and
v8.0.0 advanced exceptions.
October 2007 m Reworked text to refer to break and reset as exceptions. —
v7.2.0 m Grouped exceptions, break, reset, and interrupts all under Exception
Processing.

m Added table showing all Nios Il exceptions (by priority).

m Removed “ctl” references to control registers.

m Added j npi instruction to tables.
May 2007 m Added table of contents to Introduction section. —
v7.1.0 m Added Referenced Documents section.
March 2007 Maintenance release. —
v7.0.0
November 2006 Maintenance release. —
v6.1.0
May 2006 Maintenance release. —
v6.0.0
October 2005 Maintenance release. —
v5.1.0
May 2005 Maintenance release. —
v5.0.0
September 2004 m Added details for new control register ct | 5. —
vi.i m Updated details of debug and break processing to reflect new

behavior of the br eak instruction.

May 2004 Initial release. —
v1.0
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fAN IERA 4. Instantiating the Nios Il Processor in

NII51004-10.0.0

® SOPC Builder

Introduction

This chapter describes the Nios® II Processor MegaWizard™ interface in SOPC
Builder. This chapter contains the following sections:

“Core Nios II Page” on page 4-1

“Caches and Memory Interfaces Page” on page 4-5

|

|

m “Advanced Features Page” on page 4-7

m “JTAG Debug Module Page” on page 4-12
|

“Custom Instructions Page” on page 4-16

The Nios II Processor MegaWizard interface allows you to specify the processor
features for a particular Nios II hardware system. This chapter covers only the
features of the Nios II processor that you can configure with the Nios II Processor
MegaWizard interface. It is not a user guide for creating complete Nios II processor
systems.

To get started using SOPC Builder to design custom Nios II systems, refer to the

Nios II Hardware Development Tutorial. Nios 1I development kits also provide a number
of ready-made example hardware designs that demonstrate several different
configurations of the Nios II processor.

The Nios II Processor MegaWizard interface has several pages. The following sections
describe the settings available on each page.

Due to evolution and improvement of the Nios II Processor MegaWizard interface,
the figures in this chapter might not match the exact screens that appear in SOPC
Builder.

Core Nios Il Page

The Core Nios II page presents the main settings for configuring the Nios II
processor. Figure 4-1 shows an example of the Core Nios II page.
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Figure 4-1. Core Nios Il Page in the Nios Il Processor MegaWizard

'™ Nios Il Processor - cpu_0

Nios II Processor

Caches and Memary Interfaces > advanced Features »  MMU and MPU Settings S 1A Debug Module ™ Custom Instructions

Caore Miog Il

Select a Hios Il core:

ONios Ilfe |®Nios Ii/s ONios IIf |

. RISC RISC RISC
Nios Il 32-bit 32-hit 32-hit
Selector Guide Instruction Cache Instruction Cache
Family: Cyclone I Branch Predictinn Branch Predicﬁon
Hardware Multiply Hardware Muttiply
foystem: 85.0 MHz Hardware Divide Hardware Divide
. Barrel Shifter
c: 0
b Data Cache
Dynamic Branch Prediction
Performance at 85.0 MHz Up to 8 DMIPS Up to 42 DMIPS Up to 86 DMIPS
Logic Usage 500-700 LEs 1200-1400 LEs 1400-1500 LEs
Memaory Usage Twao MdKs (or equiv.) Two MdKs + cache Three M4Ks + cache
Hardware Muttiply: |Embedded Muttipliers v | [[] Hardware Divide
Reset Vector: Memary: |ex1_ﬂash v |Offset |0x0 |DXDDDDDDDD
Exception Vector: Memory: |onchip_ram v |Offset |0xgg |Ux021 00020

Only include the MMU when using an operating system that explicitly supports an MMU
Fast TLB Miss Exception Vector: Memary: Offset:

The following sections describe the configuration settings available.

Core Selection

The main purpose of the Core Nios II page is to select the processor core. The core
you select on this page affects other options available on this and other pages.

Altera offers the following Nios II cores:

m Nios II/f—The Nios II/f “fast” core is designed for fast performance. As a result,
this core presents the most configuration options allowing you to fine-tune the
processor for performance.

m Nios II/s—The Nios II/s “standard” core is designed for small size while
maintaining performance.

m Nios II/e—The Nios II/e “economy” core is designed to achieve the smallest
possible core size. As a result, this core has a limited feature set, and many settings
are not available when the Nios II/e core is selected.
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Core Nios Il Page

As shown in Figure 4-1, the Core Nios Il page displays a “selector guide” table that
lists the basic properties of each core.

For complete details of each core, refer to the Nios II Core Implementation Details
chapter of the Nios II Processor Reference Handbook.

Multiply and Divide Settings

Reset Vector

The Nios II/s and Nios I1/f cores offer hardware multiply and divide options. You
can choose the best option to balance embedded multiplier usage, logic element (LE)
usage, and performance.

The Hardware Multiply setting for each core provides a subset of the options in the
following list:

m DSP Block—Include DSP block multipliers in the arithmetic logic unit (ALU).
This option is only present when targeting devices that have DSP block
multipliers.

m Embedded Multipliers—Include embedded multipliers in the ALU. This option is
only present when targeting FPGA devices that have embedded multipliers.

m Logic Elements—Include LE-based multipliers in the ALU. This option achieves
high multiply performance without consuming embedded multiplier resources.

m None—This option conserves logic resources by eliminating multiply hardware.
Multiply operations are implemented in software.

Turning on Hardware Divide includes LE-based divide hardware in the ALU. The
Hardware Divide option achieves much greater performance than software
emulation of divide operations.

For details on the performance effects of the Hardware Multiply and Hardware
Divide options, refer to the Nios II Core Implementation Details chapter of the Nios II
Processor Reference Handbook.

You can select the memory module where the reset code (boot loader) resides, and the
location of the reset vector (reset address). The reset vector cannot be configured until
your system memory components are in place.

The Memory list, which includes all memory modules mastered by the Nios II
processor, allows you to select the reset vector memory module. In a typical system,
you select a nonvolatile memory module for the reset code.

Offset allows you to specify the location of the reset vector relative to the memory
module’s base address. SOPC Builder calculates the physical address of the reset
vector when you modify the memory module, the offset, or the memory module’s
base address, and displays the address next to the Offset box. This address, displayed
next to the Offset box, is always a physical address, even when an MMU is present.

For details on reset exceptions, refer to the Programming Model chapter of the Nios II
Processor Reference Handbook.
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General Exception Vector

You can select the memory module where the general exception vector (exception
address) resides, and the location of the general exception vector. The general
exception vector cannot be configured until your system memory components are in
place.

The Memory list, which includes all memory modules mastered by the Nios II
processor, allows you to select the exception vector memory module. In a typical
system, you select a low-latency memory module for the exception code.

Offset allows you to specify the location of the exception vector relative to the
memory module’s base address. SOPC Builder calculates the physical address of the
exception vector when you modify the memory module, the offset, or the memory
module’s base address. This address, displayed next to the Offset box, is always a
physical address, even when an MMU is present.

For details on exceptions, refer to the Programming Model chapter of the Nios II
Processor Reference Handbook.

Memory Management Unit Settings

The Nios II/f core offers a memory management unit (MMU) to support full-featured
operating systems. Turning on Include MMU includes the Nios II MMU in your
Nios II hardware system.

I~ Do notinclude an MMU in your Nios II system unless your operating system requires
it. The MMU is only useful with software that takes advantage of it. Many Nios II
systems involve simpler system software, such as Altera® HAL or MicroC/OS-II. Such
software is unlikely to function correctly with an MMU-based Nios II processor.

Fast TLB Miss Exception Vector

The fast TLB miss exception vector is a special exception vector used exclusively by
the MMU to handle TLB miss exceptions. You can select the memory module where
the fast TLB miss exception vector (exception address) resides, and the location of the
fast TLB miss exception vector. The fast TLB miss exception vector cannot be
configured until your system memory components are in place.

The Memory list, which includes all memory modules mastered by the Nios II
processor, allows you to select the exception vector memory module. In a typical
system, you select a low-latency memory module for the exception code.

Offset allows you to specify the location of the exception vector relative to the
memory module’s base address. SOPC Builder calculates the physical address of the
exception vector when you modify the memory module, the offset, or the memory
module’s base address. This address, displayed next to the Offset box, is always a
physical address.

I'=~ The Nios Il MMU is optional and mutually exclusive from the Nios Il MPU. Nios II
systems can include either an MMU or MPU, but cannot include both an MMU and
MPU in the same design.

- For details on the Nios Il MMU, refer to the Programming Model chapter of the Nios II
Processor Reference Handbook.
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To function correctly with the MMU, the base physical address of all exception vectors
(reset, general exception, break, and fast TLB miss) must point to low physical
memory so that hardware can correctly map their virtual addresses into the kernel
partition. This restriction is enforced by the Nios II Processor MegaWizard interface.

Memory Protection Unit Settings

I

The Nios II/f core offers a memory protection unit (MPU) to support operating
systems and runtime environments that desire memory protection without the
overhead of virtual memory management. Turning on Include MPU includes the
Nios I MPU in your Nios II hardware system.

The Nios I MPU is optional and mutually exclusive from the Nios II MMU. Nios II
systems can include either an MPU or MMU, but cannot include both an MPU and
MMU in the same design.

For details on the Nios I MPU, refer to the Programming Model chapter of the Nios II
Processor Reference Handbook.

Caches and Memory Interfaces Page

The Caches and Memory Interfaces page allows you to configure the cache and
tightly-coupled memory usage for the instruction and data master ports. Figure 4-2
shows an example of the Caches and Memory Interfaces page.

The following sections describe the configuration settings available.

Instruction Master Settings

The Instruction Master settings provide the following options for the Nios II/f and
Nios II/s cores:

m Instruction Cache—Specifies the size of the instruction cache. Valid sizes are from
512 bytes to 64 KBytes, or None.

Choosing None disables the instruction cache, which also removes the
Avalon-MM instruction master port from the Nios II processor. In this case, you
must include a tightly-coupled instruction memory.

m  Enable Bursts—The Nios II processor can fill its instruction cache lines using burst
transfers. Usually you enable bursts on the processor's instruction master when
instructions are stored in DRAM, and disable bursts when instructions are stored
in SRAM.

Bursting to DRAM typically improves memory bandwidth, but might consume
additional FPGA resources. Be aware that when bursts are enabled, accesses to
slaves might go through additional hardware (called “burst adapters”) which
might decrease fyx.

When the Nios II processor transfers execution to the first word of a cache line, the
processor fills the line by executing a sequence of word transfers that have
ascending addresses, such as 0, 4, 8, 12, 16, 20, 24, 28.
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However, when the Nios II processor transfers execution to an instruction that is
not the first word of a cache line, the processor fetches the required (or “critical”)
instruction first, and then fills the rest of the cache line. The addresses of a burst
increase until the last word of the cache line is filled, and then continue with the
first word of the cache line. For example, with a 32-byte cache line, transferring
control to address 8 results in a burst with the following address sequence: 8, 12,
16, 20, 24, 28, 0, 4.

Include tightly coupled instruction master port(s)—When on, the Nios II
processor includes tightly-coupled memory ports. You can specify one to four
ports with the Number of ports setting. Tightly-coupled memory ports appear on
the connection panel of the Nios II processor in the SOPC Builder System
Contents tab. You must connect each port to exactly one memory component in
the system.

Figure 4-2. Caches and Memory Interfaces Page in the Nios Il Processor MegaWizard

Caches and Memory Interfaces

Instruction Cache: | 2 jpytes  w Data Cache:
[[] Enakle Bursts (Burst Size: 32 bytes) Help Data Cache Line Size:

|:| Include tightly coupled instruction master port(s).

" Hios Il Processor - cpu_0 fgl

Nios II Processor

and Memory aces Advanced Features MMU and MPU Settings ITAG Debug Module Custom Instructions

Drata Master
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Data Master Settings
The Data Master settings provide the following options for the Nios II/f core:

m  Data Cache—Specifies the size of the data cache. Valid sizes are from 512 bytes to
64 KBytes, or None. Depending on the value specified for Data Cache, the
following options are available:

m Data Cache Line Size—Valid sizes are 4 bytes, 16 bytes, or 32 bytes.

m  Omit data master port—If you set Data Cache to None, you can optionally
turn on Omit data master port to remove the Avalon-MM data master port
from the Nios II processor. In this case, you must include a tightly-coupled data
memory.

"=~ Although the Nios II processor can operate entirely out of tightly-coupled
memory without the need for Avalon-MM instruction or data masters,
software debug is not possible when either the Avalon-MM instruction or
data master is omitted.

Enable Bursts—The Nios II processor can fill its data cache lines using burst
transfers. Usually you enable bursts on the processor's data bus when processor
data is stored in DRAM, and disable bursts when processor data is stored in
SRAM.

Bursting to DRAM typically improves memory bandwidth but might consume
additional FPGA resources. Be aware that when bursts are enabled, accesses to
slaves might go through additional hardware (called “burst adapters”) which
might decrease fyx.

Bursting is only enabled for data line sizes greater than 4 bytes. The burst length is
4 for a 16 byte line size and 8 for a 32 byte line size. Data cache bursts are always
aligned on the cache line boundary. For example, with a 32-byte Nios II data cache
line, a cache miss to the address 8 results in a burst with the following address
sequence: 0, 4, 8,12, 16, 20, 24 and 28.

m Include tightly coupled data master port(s)—When on, the Nios II processor
includes tightly-coupled memory ports. You can specify one to four ports with the
Number of ports setting. Tightly-coupled memory ports appear on the connection
panel of the Nios II processor in the SOPC Builder System Contents tab. You must
connect each port to exactly one memory component in the system.

Advanced Features Page

The Advanced Features page allows you to enable specialized features of the Nios II
processor. Figure 4-3 shows the Advanced Features page.
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Figure 4-3. Advanced Features Page in the Nios Il Processor MegaWizard

= Nios Il Processor - cpu
Nios ITI Processor

Caches and Memory Interfaces ™ [Advanced Features |
Advanced Features

Interrupt Contraller:

Number of shadow register sets:

External interrupt controller and shadow register sets only supported in Mios I core.
Internal interrupt controller is the only available option for Mios llie and Mios /s cores

|:| Include cpu_resetrequest and cpu_resettaken signals

These signals appear on the top-level SOPC Builder system.

“fou must manually connect these signals to logic external to the SOPC Builder system.

|:| Assign cpuid control register value manually

cpuid contraol register value: I:I

Exception Checking

|:| llegal instruction (always present with MMU and MPU)

|:| Misaligned memary access (always present with MMU and MPLY

|:| Extra exception information (always present with MMU and MPLY)

MMU and MPU Settings

X

Documentation

ITAG Debug Module S Custom Instructions >

- Warning: Number of shadow register sets is set to a non-optimal value for the selected device family. 3 is the recommended value.

Reset Signals

The Include cpu_resetrequest and cpu_resettaken signals reset signals setting
provides the following functionality. When on, the Nios II processor includes
processor-only reset request signals. These signals let another device individually
reset the Nios II processor without resetting the entire SOPC Builder system. The
signals are exported to the top level of your SOPC Builder system.

Nios II Processor Reference Handbook.

Control Registers

The Assign cpuid control register value manually control register setting provides

-o For further details on the reset signals, refer to the Processor Architecture chapter of the

Nios Il Processor Reference Handbook

the following functionality. When on, you can assign the cpui d control register value
yourself. Normally, cpui d is automatically assigned in your SOPC Builder system. To
assign the value yourself, type a 32-bit value (in hexadecimal or decimal format) into
the cpuid control register value box.
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Exception Checking
The Exception Checking settings provide the following options:

m Illegal instruction—When Illegal instruction is on, the processor generates an
illegal instruction exception when an instruction with an undefined opcode or
opcode-extension field is executed.

=~ When your system contains an MMU or MPU, the processor automatically
generates illegal instruction exceptions. Therefore, the Illegal instruction
setting is always disabled when the Core Nios II page Include MMU or
Include MPU are on.

m Division error—Division error detection is only available for the Nios II/f core,
and only then when Hardware Divide on the Core Nios II page is on. When
divide instructions are not supported by hardware, the Division error setting is
disabled.

When Division error is on, the processor generates a division error exception
when it detects divide instructions that produce a result that cannot be represented
in the destination register. This only happens in the following two cases:

m Divide by zero

m Divide overflow—A signed division that divides the largest negative number
-2147483648 (0x80000000) by -1 (Oxffffffff).

m Misaligned memory access—Misaligned memory access detection is only
available for the Nios II/f core. When Misaligned memory access is on, the
processor checks for misaligned memory accesses.

"=~ When your system contains an MMU or MPU, the processor automatically
generates misaligned memory access exceptions. Therefore, the Misaligned
memory access checkbox is always disabled when Include MMU or
Include MPU on the Core Nios II page are on.

There are two misalignhed memory address exceptions:

m Misaligned data address—Data addresses of load and store instructions are
checked for misalignment. A data address is considered misaligned if the byte
address is not a multiple of the data width of the load or store instruction (4
bytes for word, 2 bytes for half-word). Byte load and store instructions are
always aligned so never generate a misaligned data address exception.

m Misaligned destination address—Destination instruction addresses of br,
callr,jmp, ret,eret,and bret instructions are checked for misalignment.
A destination instruction address is considered misaligned if the target byte
address of the instruction is not a multiple of four.

m Extra exception information—When Extra exception information is on, nonbreak
exceptions store a code in the CAUSE field of the except i on control register to
indicate the cause of the exception.
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I'=~ When your system contains an MMU or MPU, the processor automatically
generates extra exception information. Therefore, the Extra exception
information setting is always disabled when the Core Nios II page Include
MMU or Include MPU are on.

Your exception handler can use this code to quickly determine the proper action to
take, rather than have to determine the cause of an exception through instruction

decoding. Additionally, some exceptions also store the instruction or data address
associated with the exception in the badaddr register.

“®.e For further descriptions of exceptions, exception handling, and control registers, refer

to the Programming Model chapter of the Nios II Processor Reference Handbook.

External Interrupt Controller Interface

The Interrupt controller setting determines which of the following configurations is
implemented:

m Internal interrupt controller
m External interrupt controller (EIC) interface
The EIC interface is available only on the Nios II/f core.
"=~ When the EIC interface and shadow register sets are implemented on the Nios II core,
you must ensure that your software is built with the Nios Il Embedded Design Suite

(EDS) version 9.0 or higher. Earlier versions have an implementation of the er et
instruction that is incompatible with shadow register sets.

«o For details about the EIC controller, refer to “Exception Processing” in the
Programming Model chapter of the Nios II Processor Reference Handbook.

Shadow Register Sets

The Number of shadow register sets setting determines whether the Nios II core
implements shadow register sets. The Nios II core can be configured with up to 63
shadow register sets.

Shadow register sets are available only on the Nios II/f core.

I'=~ When the EIC interface and shadow register sets are implemented on the Nios II core,
you must ensure that your software is built with the Nios II EDS version 9.0 or higher.

«o For details about shadow register sets, refer to “Registers” in the Programming Model
chapter of the Nios II Processor Reference Handbook.

MMU and MPU Settings Page

The MMU and MPU Settings page presents settings for configuring the MMU and
MPU on the Nios II processor. You can select the features appropriate for your target
application. Figure 44 shows the MMU and MPU Settings page.

Nios Il Processor Reference Handbook © July 2010 Altera Corporation


http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf

Chapter 4: Instantiating the Nios Il Processor in SOPC Builder 4-11
MMU and MPU Settings Page

Figure 4-4. MMU and MPU Settings Page in the Nios Il Processor MegaWizard

'™ Hios Il Processor - cpu_0 Pz|

Nios II Processor

Parameter

Core Mios IT Caches and Memory Interfaces Advanced Features and MPU Settings ITAG Debug Module Cuskom Instruckions

MLl and MPL Settings
ML

Process ID (PIDY) Bits:

TLE Entries:
TLE Set-Associativity:
Micro DTLE Entries:

Micra ITLE Entries:

hPL
Mumber of Data Redgions: Murmber of Instruction Regions:
Minimum Data Region Size: Minimum Instruction Region Size:

When Include MMU on the Core Nios II page is on, the MMU settings on the MMU
and MPU Settings page provide the following options for the MMU in the Nios II/f

core. Typically, you should not need to change any of these settings from their default
values.

m Process ID (PID) Bits—Specifies the number of bits to use to represent the process
identifier.

m Optimize number of TLB entries based on device family—When on, specifies
the optimal number of TLB entries to allocate based on the device family of the
target hardware and disables TLB Entries.

m TLB Entries—Specifies the number of entries in the translation lookaside buffer
(TLB).

m TLB Set-Associativity—Specifies the number of set-associativity ways in the TLB.
m Micro ITLB Entries—Specifies the number of entries in the micro instruction TLB.

m Micro DTLB Entries—Specifies the number of entries in the micro data TLB.
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MPU

=

For details on the MMU, refer to the Programming Model chapter of the Nios II Processor
Reference Handbook. For specifics on the Nios II/f core, refer to the Nios II Core
Implementation Details chapter of the Nios II Processor Reference Handbook.

When Include MPU on the Core Nios II page is on, the MPU settings on the MMU
and MPU Settings page provide the following options for the MPU in the Nios II/f
core.

m Use Limit for Region Range—Controls whether the amount of memory in the
region is defined by size or by upper address limit. When on, the amount of
memory is based on the given upper address limit. When off, the amount of
memory is based on the given size.

m Number of Data Regions—Specifies the number of data regions to allocate.
Allowed values range from 2 to 32.

® Minimum Data Region Size—Specifies the minimum data region size. Allowed
values range from 64 bytes to 1 megabyte (MB) and must be a power of two.

m Number of Instruction Regions—Specifies the number of instruction regions to
allocate. Allowed values range from 2 to 32.

® Minimum Instruction Region Size—Specifies the minimum instruction region
size. Allowed values range from 64 bytes to 1 MB and must be a power of two.

The maximum region size is the size of the Nios II instruction and data addresses
automatically determined when the Nios II system is generated in SOPC Builder.
Maximum region size is based on the address range of slaves connected to the Nios II
instruction and data masters.

For details on the MPU, refer to the Programming Model chapter of the Nios II Processor
Reference Handbook. For specifics on the Nios II/f core, refer to the Nios II Core
Implementation Details chapter of the Nios II Processor Reference Handbook.

JTAG Debug Module Page

The JTAG Debug Module page presents settings for configuring the JTAG debug
module on the Nios II processor. You can select the debug features appropriate for
your target application.

Soft-core processors such as the Nios II processor offer unique debug capabilities
beyond the features of traditional fixed processors. The soft-core nature of the Nios II
processor allows you to debug a system in development using a full-featured debug
core, and later remove the debug features to conserve logic resources. For the release
version of a product, you might choose to reduce the JTAG debug module
functionality, or remove it altogether.
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JTAG Debug Module Page

Table 4-1 describes the debug features available to you for debugging your system.

Table 4-1. Debug Configuration Features

Feature

Description

JTAG Target Connection

Connects to the processor through the standard JTAG pins on the Altera FPGA. This provides the
basic capabilities to start and stop the processor, and examine/edit registers and memory.

Download Software

Downloads executable code to the processor's memory via the JTAG connection.

Software Breakpoints

Sets a breakpoint on instructions residing in RAM.

Hardware Breakpoints

Sets a breakpoint on instructions residing in nonvolatile memory, such as flash memory.

Data Triggers

Triggers based on address value, data value, or read or write cycle. You can use a trigger to halt
the processor on specific events or conditions, or to activate other events, such as starting
execution trace, or sending a trigger signal to an external logic analyzer. Two data triggers can be
combined to form a trigger that activates on a range of data or addresses.

Instruction Trace

Captures the sequence of instructions executing on the processor in real time.

Data Trace

Captures the addresses and data associated with read and write operations executed by the
processor in real time.

On-Chip Trace

Stores trace data in on-chip memory.

Off-Chip Trace

Stores trace data in an external debug probe. Off-chip trace instantiates a PLL inside the Nios I
core. Off-chip trace requires a debug probe from First Silicon Solutions (FS2) or Lauterbach
GmbH.

The following sections describe the configuration settings available.
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Debug Level Settings

There are five debug levels available in the JTAG Debug Module page, as shown in
Figure 4-5.

Figure 4-5. JTAG Debug Module Page in the Nios Il Processor MegaWizard
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Nios Il Processor Reference Handbook

Table 4-2 is a detailed list of the characteristics of each debug level. Different levels
consume different amounts of on-chip resources. Certain Nios II cores have restricted
debug options, and certain options require debug tools provided by First Silicon
Solutions (FS2) or Lauterbach GmbH.

For details on debug features available from these third parties, refer to the FS2
website (www.fs2.com) and the Lauterbach GmbH website (www.lauterbach.com).
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Table 4-2. JTAG Debug Module Levels
Debug Feature No Debug Level 1 Level 2 Level 3 Level 4 (1)
Logic Usage 0 300—400 LEs | 800—900 LEs | 2,400—2,700 LEs | 3,100—3,700 LEs
On-Chip Memory Usage 0 Two M4Ks Two M4Ks Four M4Ks Four M4Ks
External I/0 Pins Required (2) 0 0 0 0 20
JTAG Target Connection No Yes Yes Yes Yes
Download Software No Yes Yes Yes Yes
Software Breakpoints None Unlimited Unlimited Unlimited Unlimited
Hardware Execution 0 None 2 2 4
Breakpoints
Data Triggers None 2 2 4
On-Chip Trace None None Upto 64K Frames | Up to 64K Frames
(3)
Off-Chip Trace (4) 0 None None None 128K Frames

Notes to Table 4-2:

(1) Level 4 requires the purchase of a software upgrade from FS2 or Lauterbach.

(2) Not including the dedicated JTAG pins on the Altera FPGA.
(3) An additional license from FS2 is required to use more than 16 frames.
(4) Off-chip trace requires the purchase of additional hardware from FS2 or Lauterbach.

The Include debugreq and debugack signals debug signals setting provides the
following functionality. When on, the Nios II processor includes debug request and
acknowledge signals. These signals let another device temporarily suspend the

Nios II processor for debug purposes. The signals are exported to the top level of your

SOPC Builder system.

2
4
Debug Signals
am

the Nios 1I Processor Reference Handbook.

Break Vector

o For further details on the debug signals, refer to the Processor Architecture chapter of

If the Nios II processor contains a JTAG debug module, SOPC Builder determines a
break vector (break address). Memory is always the processor core you are
configuring. Offset is fixed at 0x20. SOPC Builder calculates the physical address of
the break vector from the memory module’s base address and the offset.

Advanced Debug Settings

Debug levels 3 and 4 support trace data collection into an on-chip memory buffer. You
can set the on-chip trace buffer size to sizes from 128 to 64K trace frames, using OCI
Onchip Trace. Larger buffer sizes consume more on-chip M4K RAM blocks. Every
M4K RAM block can store up to 128 trace frames.

[/T:'F‘
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Debug level 4 also supports manual 2X clock signal specification. If you want to use a
specific 2X clock signal in your FPGA design, turn off Automatically generate
internal 2X clock signal and drive a 2X clock signal into your SOPC Builder system
manually.

For further details on trace frames, refer to the Processor Architecture chapter of the
Nios II Processor Reference Handbook.

Custom Instructions Page

The Custom Instructions page allows you to connect custom instruction logic to the
Nios II arithmetic logic unit (ALU). You can achieve significant performance
improvements, often on the order of 10x to 100x, by implementing
performance-critical operations in hardware using custom instruction logic.

Figure 4-6 shows an example of the Custom Instructions page.

To add a custom instruction to the Nios II processor, select the custom instruction
from the list at the left side of the page, and click Add. The added instruction appears
on the right side of the page.

To display custom instructions in the table of active components on the SOPC Builder
System Contents tab, click Filter in the lower right of the System Contents tab, and
turn on Nios Custom Instruction.

To create your own custom instruction using the component editor, click Import.
After finishing in the component editor, the new instruction appears in the list at the
left side of the Custom Instructions page.

Nios Il Processor Reference Handbook © July 2010 Altera Corporation
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Custom Instructions Page

Figure 4-6. Custom Instructions Page in the Nios Il Processor MegaWizard

'™ Hios Il Processor - cpu_0 le

Nios II Processor

Bitswap
Endian Converter

Floating Poirt Hardware

Interrupt Wector

Custom Instructions

[Mame Clock Cycles M Part Opcode Extension

=

All signals in Nios II custom instructions must have the Custom Instruction Slave
interface type. To guarantee the component editor automatically selects the Custom
Instruction Slave interface type for your signals correctly during import, begin your
signal names with the prefix ncs_. This prefix allows the component editor to
determine the connection point type: a Nios II custom instruction slave. For example,
if a custom instruction component has two data signals plus clock, reset, and result
signals, an appropriate set of signal names is ncs_dat aa, ncs_dat ab, ncs_cl k,
ncs_reset,and ncs_result.

A complete discussion of the hardware and software design process for custom
instructions is beyond the scope of this chapter. For full details on the topic of custom
instructions, including working example designs, refer to the Nios II Custom
Instruction User Guide.

The following sections describe the default custom instructions Altera provides.
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Interrupt Vector Custom Instruction

The Nios II processor offers an interrupt vector custom instruction which reduces
average and worst case interrupt latency.

To add the interrupt vector custom instruction to the Nios II processor, select
Interrupt Vector from the list, and click Add.

There can only be one interrupt vector custom instruction component in a Nios II
processor. If the interrupt vector custom instruction is present in the Nios II processor,
the hardware abstraction layer (HAL) source detects it at compile time and generates
code using the custom instruction.

The interrupt vector custom instruction improves both average and worst case
interrupt latency by up to 20%. To achieve the lowest possible interrupt latency,
consider using tightly-coupled memories so that interrupt handlers can run without
cache misses.

The interrupt vector custom instruction is not compatible with the EIC interface. For
the Nios I1/f core, the EIC interface with the Altera vectored interrupt controller
component provides superior performance.

For details of the interrupt vector custom instruction implementation, refer to
“Exception and Interrupt Controller” in the Processor Architecture chapter of the Nios II
Processor Reference Handbook. For guidance with tightly-coupled memories, refer to
“Tightly-Coupled Memory” in the Processor Architecture chapter of the Nios II Processor
Reference Handbook.

Floating-Point Hardware Custom Instruction

The Nios II processor offers a set of optional predefined custom instructions that
implement floating-point arithmetic operations. You can include these custom
instructions to support computation-intensive floating-point applications.

The basic set of floating-point custom instructions includes single precision (32-bit)
floating-point addition, subtraction, and multiplication. Floating-point division is
available as an extension to the basic instruction set. The best choice for your
hardware design depends on a balance among floating-point usage, hardware
resource usage, and performance.

If the target device includes on-chip multiplier blocks, the floating-point custom
instructions incorporate them as needed. If there are no on-chip multiplier blocks, the
floating-point custom instructions are entirely based on general-purpose logic
elements.

The opcode extensions for the floating-point custom instructions are 252 through 255
(OXFC through 0xFF). These opcode extensions cannot be modified.

To add the floating-point custom instructions to the Nios II processor, select Floating
Point Hardware from the list, and click Add. By default, SOPC Builder includes
floating-point addition, subtraction, and multiplication, but omits the more resource
intensive floating-point division. The Floating Point Hardware wizard, shown in
Figure 4-7, appears, giving you the option to include the floating-point division
hardware.
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Figure 4-7. Floating Point Hardware Wizard

™ Floating Point Hardware - cpu_0_fpoint

Floating Point Hardware

| Documentation I

This component crestes hardware for flosting point
single-precision add, subtract, multiply and optionally divide.

|:| Use flosting point division hardware

Turn on Use floating point division hardware to include floating-point division
hardware. The floating-point division hardware requires more resources than the
other instructions, so you might wish to omit it if your application does not make
heavy use of floating-point division.

Click Finish to add the floating-point custom instructions to the Nios II processor.
“.e For further details on the floating-point custom instructions, refer to the Processor
Architecture chapter of the Nios II Processor Reference Handbook.

Endian Converter Custom Instruction

The Nios II processor core offers an endian converter custom instruction to reduce the
time spent performing byte reversal operations.

To add the endian converter custom instruction to the Nios II processor, select Endian
Converter from the list, and click Add.

The endian converter custom instruction takes a 32 bit value and converts the
endianness in a single clock cycle. The Nios II processor core supports little endian so
this custom instruction allows you to convert data shared with a big endian processor
core. It is important to note that this custom instruction does not convert the Nios II
processor core to big endian architecture, it only converts big endian data to little
endian and vice versa.

Bitswap Custom Instruction

The Nios II processor core offers a bitswap custom instruction to reduce the time
spent performing bit reversal operations.

To add the bitswap custom instruction to the Nios II processor, select Bitswap from
the list, and click Add.

The bitswap custom instruction reverses a 32 bit value in a single clock cycle. To
perform the equivalent operation in software requires many mask and shift
operations.
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For details about integrating the bitswap custom instruction into your own algorithm,

refer to the Nios II Custom Instruction User Guide.

The Quartus Il IP File

The Quartus® IL IP file (.qip) is a file generated by the MegaWizard interface or SOPC
Builder that contains information about a generated IP core. You are prompted to add
this .qip file to the current project at the time of Quartus II file generation. In most
cases, the .qip file contains all of the necessary assignments and information required
to process the core or system in the Quartus II compiler. Generally, a single .qip file is
generated for each MegaCore function and for each SOPC Builder system. However,
some more complex SOPC Builder components generate a separate .qip file, so the

system .qip file references the component .qip file.

Referenced Documents

This chapter references the following documents:

m  Nios II Hardware Development Tutorial

m  Nios II Core Implementation Details chapter of the Nios II Processor Reference

Handbook

m  Programming Model chapter of the Nios 1I Processor Reference Handbook

m  Processor Architecture chapter of the Nios II Processor Reference Handbook

m Nios II Custom Instruction User Guide
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Table 4-3 shows the revision history for this document.

Table 4-3. Document Revision History (Part 1 of 2)
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v10.0.0
November 2009 m Added external interrupt controller interface information. Added shadow register sets
v9.1.0 m Added shadow register set information. and external interrupt

controller support
March 2009 Maintenance release. —
v9.0.0
November 2008 m Added debugr eq and debugack signal options to Advanced —
v8.1.0 Features page.
m Added cpuid manual override options to Advanced Features page.

May 2008 m Added MMU options to Nios Il Core and Advanced Features pages. | Added MMU and exception
v8.0.0 = Added exception handling options Advanced Features page. handling options.
October 2007 Changed title to match other Altera documentation. —
v7.2.0
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Table 4-3. Document Revision History (Part 2 of 2)

Date & Document
Version Changes Made Summary of Changes
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v7.1.0 m Added “Endian Converter Gustom Instruction” on page 4-19 and
“Bitswap Custom Instruction” on page 4-19.
m Added table of contents to Introduction section.
m Added Referenced Documents section.
March 2007 Maintenance release. —
v7.0.0
November 2006 m Add section on interrupt vector custom instruction. —
v6.1.0 m Add section on system-dependent Nios Il processor settings.
May 2006 m Added details on floating-point custom instructions. —
v6.0.0 m Added section on Advanced Features tab.
October 2005 Maintenance release. —
v5.1.0
May 2005 m Updates to reflect new GUI options in Nios Il processor version 5.0. —
v5.0.0 m New details in “Caches and Tightly-Coupled Memory” section.
September 2004 m Updates to reflect new GUI options in Nios Il processor version 1.1. —
vi.i m New details in section “Multiply and Divide Settings.”
May 2004 Initial release. —
v1.0
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fAN ITERA Section Il. Nios Il Processor
= e Implementation and Reference

This section provides additional information about the Nios® II processor.
This section includes the following chapters:

m Chapter 5, Nios II Core Implementation Details

m Chapter 6, Nios II Processor Revision History

m Chapter 7, Application Binary Interface

m  Chapter 8, Instruction Set Reference
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5. Nios Il Core Implementation Details

NII51015-10.0.0

Introduction

This document describes all of the Nios® II processor core implementations available
at the time of publishing. This document describes only implementation-specific
features of each processor core. All cores support the Nios II instruction set
architecture.

For more information regarding the Nios II instruction set architecture, refer to the
Instruction Set Reference chapter of the Nios II Processor Referenice Handbook.

For common core information and details on a specific core, refer to the appropriate
section:

m “Device Family Support” on page 5-3

m “Nios II/f Core” on page 54

m “Nios II/s Core” on page 5-14

m “Nios II/e Core” on page 5-19

Table 5-1 compares the objectives and features of each Nios II processor core. The
table is designed to help system designers choose the core that best suits their target
application.

Table 5-1. Nios Il Processor Cores (Part 1 of 3)

Core
Feature Nios ll/e Nios ll/s Nios Il/f
Objective Minimal core size Small core size Fast execution speed
Performance DMIPS/MHz (1) 0.15 0.74 1.16
Max. DMIPS (2) 31 127 218
Max. fux (2) 200 MHz 165 MHz 185 MHz
Area < 700 LEs; <1400 LEs; Without MMU or MPU:
< 350 ALMs <700 ALMs < 1800 LEs;
<900 ALMs
With MMU:
<3000 LEs;
<1500 ALMs
With MPU:
<2400 LEs;
<1200 ALMs
Pipeline 1 stage 5 stages 6 stages
External Address Space 2 GB 2 GB 2 GB without MMU
4 GB with MMU

© July 2010  Altera Corporation
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Table 5-1. Nios Il Processor Cores (Part 2 of 3)

Core
Feature Nios li/e Nios ll/s Nios Il/f
Instruction Cache - 512 bytes to 64 KB 512 bytes to 64 KB
Bus Pipelined Memory Access - Yes Yes
Branch Prediction - Static Dynamic
Tightly-Coupled Memory - Optional Optional
Data Bus Cache - - 512 bytes to 64 KB
Pipelined Memory Access - - -
Cache Bypass Methods - - m /0 instructions
m Bit-31 cache bypass
m Optional MMU
Tightly-Coupled Memory - - Optional
Arithmetic Hardware Multiply - 3-cycle (3) 1-cycle (3)
Logic Unit Hardware Divide - Optional Optional
Shifter 1 cycle-per-bit 3-cycle shift (3) 1-cycle barrel
shifter (3)
JTAG Debug | JTAG interface, run control, | Optional Optional Optional
Module software breakpoints
Hardware Breakpoints - Optional Optional
Off-Chip Trace Buffer - Optional Optional
Memory Management Unit - - Optional
Memory Protection Unit - - Optional

Exception
Handling

Exception Types

Software trap,
unimplemented
instruction, illegal
instruction, hardware
interrupt

Software trap,
unimplemented
instruction, illegal
instruction, hardware
interrupt

Software trap,
unimplemented
instruction, illegal
instruction,
supervisor-only
instruction,
supervisor-only instruction
address, supervisor-only
data address, misaligned
destination address,
misaligned data address,
division error, fast TLB
miss, double TLB miss,
TLB permission violation,
MPU region violation,
internal hardware interrupt,
external hardware
interrupt, nonmaskable
interrupt

Interface

Integrated Interrupt Yes Yes Yes
Controller
External Interrupt Controller | No No Optional

Nios Il Processor Reference Handbook
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Table 5-1. Nios Il Processor Cores (Part 3 of 3)

Feature

Core

Nios ll/e

Nios Il/s

Nios Il/f

Shadow Register Sets

No

No

Optional, up to 63

User Mode Support No; Permanently in No; Permanently in Yes; When MMU or MPU
supervisor mode supervisor mode present
Custom Instruction Support Yes Yes Yes

Notes to Table 5-1:

(1) DMIPS performance for the Nios Il/s and Nios II/f cores depends on the hardware multiply option.
(2) Using the fastest hardware multiply option, and targeting a Stratix® Il FPGA in the fastest speed grade.

(3) Multiply and shift performance depends on the hardware multiply option you use. If no hardware multiply option is used, multiply operations
are emulated in software, and shift operations require one cycle per bit. For details, refer to the arithmetic logic unit description for each core.

Device Family Support

All Nios II cores provide the same support for target Altera® device families. Nios II
cores provide device family support to each of the Altera device families as shown in

Table 5-2.
Table 5-2. Device Family Support
Device Family Support (1)
Arria® GX Final
Arria Il GX Preliminary
Cyclone® Il Final
Cyclone Ill Final
Cyclone Il LS Preliminary
Cyclone IV GX Preliminary
HardCopy® Il HardCopy Companion
HardCopy III/IV E HardCopy Companion
HardCopy IV GX HardCopy Companion
Stratix Il Final
Stratix 1l GX Final
Stratix [l Final
Stratix IV E Final
Stratix IV GT Preliminary
Stratix IV GX Final
Stratix V Preliminary
Other device families No support
Note to Table 5-2:
(1) Device support levels are defined in Table 5-3.

Table 5-3 defines the device support level nomenclature used by Altera IP cores.
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Table 5-3. Altera IP Core Device Support Levels

FPGA Device Families

HardCopy Device Families

Preliminary support—The core is verified with preliminary
timing models for this device family. The core meets all
functional requirements, but might still be undergoing
timing analysis for the device family. It can be used in
production designs with caution.

HardCopy Companion—The core is verifed with preliminary
timing models for the HardCopy companion device. The core
meets all functional requirements, but might still be
undergoing timing analysis for HardGopy device family. It
can be used in production designs with caution.

Final support—The core is verified with final timing models
for this device family. The core meets all functional and
timing requirements for the device family and can be used in
production designs.

HardCopy Compilation—The core is verifed with final timing
models for the HardCopy device family. The core meets all
functional and timing requirements for the device family and
can be used in production designs.

Nios lI/f Core

The Nios II/f fast core is designed for high execution performance. Performance is
gained at the expense of core size. The base Nios II/f core, without the memory
management unit (MMU) or memory protection unit (MPU), is approximately 25%
larger than the Nios II/s core. Altera designed the Nios II/f core with the following

design goals in mind:

m Maximize the instructions-per-cycle execution efficiency

m  Optimize interrupt latency

m  Maximize fy,x performance of the processor core

The resulting core is optimal for performance-critical applications, as well as for
applications with large amounts of code and/or data, such as systems running a

full-featured operating system.

Overview
The Nios II/f core:

m Has separate optional instruction and data caches

m Provides optional MMU to support operating systems that require an MMU

m Provides optional MPU to support operating systems and runtime environments
that desire memory protection but do not need virtual memory management

m  Can access up to 2 GB of external address space when no MMU is present and
4 GB when the MMU is present

m Supports optional external interrupt controller (EIC) interface to provide
customizable interrupt prioritization

m Supports optional shadow register sets to improve interrupt latency

m Supports optional tightly-coupled memory for instructions and data

m Employs a 6-stage pipeline to achieve maximum DMIPS/MHz

m Performs dynamic branch prediction

m Provides optional hardware multiply, divide, and shift options to improve

arithmetic performance

Nios Il Processor Reference Handbook
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55

Arithmetic Logic

Supports the addition of custom instructions
Supports the JTAG debug module

Supports optional JTAG debug module enhancements, including hardware
breakpoints and real-time trace

The following sections discuss the noteworthy details of the Nios II/f core
implementation. This document does not discuss low-level design issues or
implementation details that do not affect Nios II hardware or software designers.

Unit

The Nios I1/f core provides several arithmetic logic unit (ALU) options to improve the
performance of multiply, divide, and shift operations.

Multiply and Divide Performance

The Nios I1/f core provides the following hardware multiplier options:

m DSP Block—Includes DSP block multipliers available on the target device. This

option is available only on Altera FPGAs that have DSP Blocks.

Embedded Multipliers—Includes dedicated embedded multipliers available on
the target device. This option is available only on Altera FPGAs that have
embedded multipliers.

Logic Elements—Includes hardware multipliers built from logic element (LE)
resources.

None—Does not include multiply hardware. In this case, multiply operations are
emulated in software.

The Nios II/f core also provides a hardware divide option that includes LE-based
divide circuitry in the ALU.

Including an ALU option improves the performance of one or more arithmetic
instructions.

The performance of the embedded multipliers differ, depending on the target FPGA
family.

Table 5-4 lists the details of the hardware multiply and divide options.

Table 5-4. Hardware Multiply and Divide Details for the Nios II/f Core (Part 1 of 2)

Cycles per Result Latency Supported
ALU Option Hardware Details Instruction Cycles Instructions
No hardware multiply or | Multiply and divide - - None
divide instructions generate an
exception
Logic elements ALU includes 32 x 4-bit 11 +2 mul , mul i
multiplier
DSP block on Stratix Il ALU includes 32 x 32-bit 1 +2 mul , mul i,
and Stratix IIl families multiplier mul xss, nmul xsu,
mul xuu

© July 2010 Altera Corporation

Nios Il Processor Reference Handbook



5-6

Chapter 5: Nios Il Core Implementation Details

Nios II/f Core
Table 5-4. Hardware Multiply and Divide Details for the Nios II/f Core (Part 2 of 2)
Cycles per Result Latency Supported

ALU Option Hardware Details Instruction Cycles Instructions
Embedded multipliers on | ALU includes 32 x 16-bit 5 +2 mul , mul i
Cyclone Il and multiplier
Cyclone Il families
Hardware divide ALU includes multicycle 4 - 66 +2 di v,di vu

divide circuit

Memory Access

Nios Il Processor Reference Handbook

The cycles per instruction value determines the maximum rate at which the ALU can
dispatch instructions and produce each result. The latency value determines when the
result becomes available. If there is no data dependency between the results and
operands for back-to-back instructions, then the latency does not affect throughput.
However, if an instruction depends on the result of an earlier instruction, then the
processor stalls through any result latency cycles until the result is ready.

In the following code example, a multiply operation (with 1 instruction cycle and 2
result latency cycles) is followed immediately by an add operation that uses the result
of the multiply. On the Nios II/f core, the addi instruction, like most ALU
instructions, executes in a single cycle. However, in this code example, execution of
the addi instruction is delayed by two additional cycles until the multiply operation
completes.

rl
ri

r2 *r3
rl + 100 (Depends on

mul
addi

ri,
ri,

r2,
ri,

r3 ;
100

result of nul)

In contrast, the following code does not stall the processor.

mul rl, r2, r3 crl=r2*r3

or r5 r5, r6 ; No dependency on previous results

or r7, r7, r8 ; No dependency on previous results

addi r1, r1, 100 ; rl1 =rl1 + 100 (Depends on result of mul)

Shift and Rotate Performance

The performance of shift operations depends on the hardware multiply option. When
a hardware multiplier is present, the ALU achieves shift and rotate operations in one
or two clock cycles. Otherwise, the ALU includes dedicated shift circuitry that
achieves one-bit-per-cycle shift and rotate performance. Refer to Table 5-10 on

page 5-12 for details.

The Nios II/f core provides optional instruction and data caches. The cache size for
each is user-definable, between 512 bytes and 64 KB.

The memory address width in the Nios II/f core depends on whether the optional
MMU is present. Without an MMU, the Nios II/f core supports the bit-31 cache
bypass method for accessing I/O on the data master port. Therefore addresses are 31
bits wide, reserving bit 31 for the cache bypass function. With an MMU, cache bypass
is a function of the memory partition and the contents of the translation lookaside
buffer (TLB). Therefore bit-31 cache bypass is disabled, and 32 address bits are
available to address memory.
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Instruction and Data Master Ports

The instruction master port is a pipelined Avalon® Memory-Mapped (Avalon-MM)
master port. If the core includes data cache with a line size greater than four bytes,
then the data master port is a pipelined Avalon-MM master port. Otherwise, the data
master port is not pipelined.

The instruction and data master ports on the Nios II/f core are optional. A master port
can be excluded, as long as the core includes at least one tightly-coupled memory to
take the place of the missing master port.

Although the Nios II processor can operate entirely out of tightly-coupled memory
without the need for Avalon-MM instruction or data masters, software debug is not
possible when either the Avalon-MM instruction or data master is omitted.

Support for pipelined Avalon-MM transfers minimizes the impact of synchronous
memory with pipeline latency. The pipelined instruction and data master ports can
issue successive read requests before prior requests complete.

Instruction and Data Caches

This section first describes the similar characteristics of the instruction and data cache
memories, and then describes the differences.

Both the instruction and data cache addresses are divided into fields based on
whether or not an MMU is present in your system. Table 5-5 shows the cache byte
address fields for systems without an MMU present.

Tahle 5-5. Cache Byte Address Fields

31‘30‘29‘28‘27‘26‘25‘24‘23‘22‘21‘20‘19 18‘17‘16‘15‘14‘13‘12|11|1l]|9|8|7|6|5 4|3|2|1|0

tag line offset

Table 5-6 shows the cache virtual byte address fields for systems with an MMU
present. Table 5-7 shows the cache physical byte address fields for systems with an
MMU present.

Table 5-6. Cache Virtual Byte Address Fields

31‘30‘29‘28‘27‘26|25|24|23|22‘21‘20 19‘18‘17‘16‘15‘14‘13‘12‘11‘10‘9|8|7|6|5 4‘3‘2‘1‘0

line offset

Tahle 5-7. Cache Physical Byte Address Fields

31‘30‘29‘28‘27‘26|25|24|23|22‘21‘20‘19‘18‘17 16‘15‘14‘13‘12‘11‘10‘9|8|7|6|5 4‘3‘2‘1‘0

tag offset

Instruction Cache

The instruction cache memory has the following characteristics:
m Direct-mapped cache implementation.
m 32 bytes (8 words) per cache line.

m The instruction master port reads an entire cache line at a time from memory, and
issues one read per clock cycle.
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m  Critical word first.
m Virtually-indexed, physically-tagged, when MMU present.

The size of the tag field depends on the size of the cache memory and the physical
address size. The size of the line field depends only on the size of the cache memory.
The offset field is always five bits (i.e., a 32-byte line). The maximum instruction byte
address size is 31 bits in systems without an MMU present. In systems with an MMU,
the maximum instruction byte address size is 32 bits and the tag field always includes
all the bits of the physical frame number (PFN).

The instruction cache is optional. However, excluding instruction cache from the
Nios II/f core requires that the core include at least one tightly-coupled instruction
memory.

Data Cache

The data cache memory has the following characteristics:
m Direct-mapped cache implementation
m Configurable line size of 4, 16, or 32 bytes

m The data master port reads an entire cache line at a time from memory, and issues
one read per clock cycle.

m Write-back

m  Write-allocate (i.e., on a store instruction, a cache miss allocates the line for that
address)

m Virtually-indexed, physically-tagged, when MMU present

The size of the tag field depends on the size of the cache memory and the physical
address size. The size of the line field depends only on the size of the cache memory.
The size of the offset field depends on the line size. Line sizes of 4, 16, and 32 bytes
have offset widths of 2, 4, and 5 bits respectively. The maximum data byte address size
is 31 bits in systems without an MMU present. In systems with an MMU, the
maximum data byte address size is 32 bits and the tag field always includes all the bits
of the PFN.

The data cache is optional. If the data cache is excluded from the core, the data master
port can also be excluded.

The Nios Il instruction set provides several different instructions to clear the data
cache. There are two important questions to answer when determining the instruction
to use. Do you need to consider the tag field when looking for a cache match? Do you
need to write dirty cache lines back to memory before clearing? Table 5-9 shows the
most appropriate instruction to use for each case.

Table 5-8. Data Cache Clearing Instructions

Ignore Tag Field Consider Tag Field
Write Dirty Lines flushd flushda
Do Not Write Dirty Lines initd initda
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1=

The 4-byte line data cache implementation substitutes the f | ushd instruction for the
f 1 ushda instruction and triggers an unimplemented instruction exception for the

i ni t da instruction. The 16-byte and 32-byte line data cache implementations fully
support the f | ushda and i ni t da instructions.

For more information regarding the Nios II instruction set, refer to the Instruction Set
Reference chapter of the Nios I Processor Reference Handbook.

The Nios II/f core implements all the data cache bypass methods.

For information regarding the data cache bypass methods, refer to the Processor
Architecture chapter of the Nios II Processor Reference Handbook

Mixing cached and uncached accesses to the same cache line can result in invalid data
reads. For example, the following sequence of events causes cache incoherency.

1. The Nios II core writes data to cache, creating a dirty data cache line.

2. The Nios II core reads data from the same address, but bypasses the cache.

Avoid mixing cached and uncached accesses to the same cache line, regardless
whether you are reading from or writing to the cache line. If it is necessary to mix
cached and uncached data accesses, flush the corresponding line of the data cache
after completing the cached accesses and before performing the uncached accesses.

Bursting

When the data cache is enabled, you can enable bursting on the data master port.
Consult the documentation for memory devices connected to the data master port to
determine whether bursting can improve performance.

Tightly-Coupled Memory

The Nios II/f core provides optional tightly-coupled memory interfaces for both
instructions and data. A Nios II/f core can use up to four each of instruction and data
tightly-coupled memories. When a tightly-coupled memory interface is enabled, the
Nios II core includes an additional memory interface master port. Each
tightly-coupled memory interface must connect directly to exactly one memory slave
port.

When tightly-coupled memory is present, the Nios II core decodes addresses
internally to determine if requested instructions or data reside in tightly-coupled
memory. If the address resides in tightly-coupled memory, the Nios II core fetches the
instruction or data through the tightly-coupled memory interface. Software accesses
tightly-coupled memory with the usual load and store instructions, such as | dwor

| dwi 0.

Accessing tightly-coupled memory bypasses cache memory. The processor core
functions as if cache were not present for the address span of the tightly-coupled
memory. Instructions for managing cache, such asi ni t d and f | ushd, do not affect
the tightly-coupled memory, even if the instruction specifies an address in
tightly-coupled memory.

When the MMU is present, tightly-coupled memories are always mapped into the
kernel partition and can only be accessed in supervisor mode.
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Memory Management Unit
The Nios II/f core provides options to improve the performance of the Nios I MMU.

- For details on the MMU architecture, refer to the Programming Model chapter of the
Nios II Processor Reference Handbook.

Micro Translation Lookaside Buffers

The translation lookaside buffer (TLB) consists of one main TLB stored in on-chip
RAM and two separate micro TLBs (UTLB) for instructions (WTLB) and data (WDTLB)
stored in LE-based registers.

The uTLBs have a configurable number of entries and are fully associative. The
default configuration has 6 puDTLB entries and 4 uITLB entries. The hardware chooses
the least-recently used UTLB entry when loading a new entry.

The UTLBs are not visible to software. They act as an inclusive cache of the main TLB.
The processor firsts look for a hit in the uTLB. If it misses, it then looks for a hit in the
main TLB. If the main TLB misses, the processor takes an exception. If the main TLB
hits, the TLB entry is copied into the uTLB for future accesses.

The hardware automatically flushes the UTLB on each TLB write operation and on a
wr ct| tothet| bmi sc register in case the process identifier (PID) has changed.

Memory Protection Unit

The Nios I1/f core provides options to improve the performance of the Nios Il MPU.
For details on the MPU architecture, refer to the Programming Model chapter of the
Nios II Processor Reference Handbook.

Execution Pipeline

This section provides an overview of the pipeline behavior for the benefit of
performance-critical applications. Designers can use this information to minimize
unnecessary processor stalling. Most application programmers never need to analyze
the performance of individual instructions.

The Nios II/f core employs a 6-stage pipeline. The pipeline stages are listed in
Table 5-9.

Table 5-9. Implementation Pipeline Stages for Nios II/f Core

Stage Letter Stage Name
F Fetch
Decode
Execute
Memory
Align
Writeback

=Sl =2 m|lo

Up to one instruction is dispatched and/or retired per cycle. Instructions are
dispatched and retired in-order. Dynamic branch prediction is implemented using a
2-bit branch history table. The pipeline stalls for the following conditions:
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®m  Multi-cycle instructions
m Avalon-MM instruction master port read accesses
m Avalon-MM data master port read/write accesses

m Data dependencies on long latency instructions (e.g., load, multiply, shift).

Pipeline Stalls

The pipeline is set up so that if a stage stalls, no new values enter that stage or any
earlier stages. No “catching up” of pipeline stages is allowed, even if a pipeline stage
is empty.

Only the A-stage and D-stage are allowed to create stalls.
The A-stage stall occurs if any of the following conditions occurs:

B An A-stage memory instruction is waiting for Avalon-MM data master requests to
complete. Typically this happens when a load or store misses in the data cache, or
a f | ushd instruction needs to write back a dirty line.

m An A-stage shift/rotate instruction is still performing its operation. This only
occurs with the multi-cycle shift circuitry (i.e., when the hardware multiplier is not
available).

B An A-stage divide instruction is still performing its operation. This only occurs
when the optional divide circuitry is available.

m  An A-stage multi-cycle custom instruction is asserting its stall signal. This only
occurs if the design includes multi-cycle custom instructions.

The D-stage stall occurs if an instruction is trying to use the result of a late result
instruction too early and no M-stage pipeline flush is active. The late result
instructions are loads, shifts, rotates, r dct | , multiplies (if hardware multiply is
supported), divides (if hardware divide is supported), and multi-cycle custom
instructions (if present).

Branch Prediction

The Nios II/f core performs dynamic branch prediction to minimize the cycle penalty
associated with taken branches.

Instruction Performance

All instructions take one or more cycles to execute. Some instructions have other
penalties associated with their execution. Late result instructions have two cycles
placed between them and an instruction that uses their result. Instructions that flush
the pipeline cause up to three instructions after them to be cancelled. This creates a
three-cycle penalty and an execution time of four cycles. Instructions that require
Avalon-MM transfers are stalled until any required Avalon-MM transfers (up to one
write and one read) are completed.

Execution performance for all instructions is shown in Table 5-10.
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Table 5-10. Instruction Execution Performance for Nios II/f Core 4byte/line data cache

Instruction Cycles Penalties
Normal ALU instructions (e.g., add, cmplt) 1
Combinatorial custom instructions 1
Multi-cycle custom instructions >1 Late result
Branch (correctly predicted, taken) 2
Branch (correctly predicted, not taken) 1
Branch (mis-predicted) 4 Pipeline flush
trap, break,eret,bret,flushp,wctl,w prs;illegal and unimplemented 40r5 (2) | Pipeline flush
instructions
call,jnpi,rdprs 2
jmp,ret,callr 3
rdctl 1 Late result
| oad (without Avalon-MM transfer) 1 Late result
| oad (with Avalon-MM transfer) >1 Late result
st or e (without Avalon-MM transfer) 1
st or e (with Avalon-MM transfer) >1
fl ushd, f | ushda (without Avalon-MM transfer) 2
fl ushd, f I ushda (with Avalon-MM transfer) >2
initd,initda 2
flushi,initi 4
Multiply (1) Late result
Divide (1) Late result
Shift/rotate (with hardware multiply using embedded multipliers) 1 Late result
Shift/rotate (with hardware multiply using LE-based multipliers) 2 Late result
Shift/rotate (without hardware multiply present) 1—32 Late result
All other instructions 1

Note to Table 5-10:
(1) Depends on the hardware multiply or divide option. Refer to Table 5-4 on page 5-5 for details.

(2) Inthe default Nios II/f configuration, these instructions require four clock cycles. If any of the following options are present, they require five

clock cycles:

m  MMU

MPU

Division exception

Misaligned load/store address exception
Extra exception information

EIC port

Shadow register sets

Exception Handling

The Nios II/f core supports the following exception types:

m Hardware interrupts

m Software trap

Nios Il Processor Reference Handbook
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Illegal instruction

Unimplemented instruction

Supervisor-only instruction (MMU or MPU only)
Supervisor-only instruction address (MMU or MPU only)
Supervisor-only data address (MMU or MPU only)
Misaligned data address

Misaligned destination address

Division error

Fast translation lookaside buffer (TLB) miss (MMU only)
Double TLB miss (MMU only)

TLB permission violation (MMU only)

MPU region violation (MPU only)

External Interrupt Controller Interface

The EIC interface enables you to speed up interrupt handling in a complex system by
adding a custom interrupt controller.

The EIC interface is an Avalon-ST sink with the following input signals:

eic_port_valid

ei c_port_data

Signals are rising-edge triggered, and synchronized with the Nios II clock input.

The EIC interface presents the following signals to the Nios II processor through the
ei c_port _dat a signal:

Requested handler address (RHA)—The 32-bit address of the interrupt handler
associated with the requested interrupt

Requested register set (RRS)—The six-bit number of the register set associated
with the requested interrupt

Requested interrupt level (RIL)—The six-bit interrupt level. If RIL is 0, no
interrupt is requested.

Requested nonmaskable interrupt (RNMI) flag—A one-bit flag indicating whether
the interrupt is to be treated as nonmaskable

Figure 6 shows the field positions in ei c_port _dat a.

Figure 6. eic_port_data Signal

44

13 | 12 7|65 0

RIL

RN\M
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Following Avalon-ST protocol requirements, the EIC interface samples

ei c_port _dat a only when ei ¢_port _val i d is asserted (high). When

ei c_port _val i disnot asserted, the processor latches the previous values of RHA,
RRS, RIL and RNMI. To present new values on ei c_por t _dat a, the EIC must
transmit a new packet, asserting ei c_port _val i d. An EIC can transmit a new
packet once per clock cycle.

For an example of an EIC implementation, refer to the Vectored Interrupt Controller
chapter in the Embedded Peripherals IP User Guide.

JTAG Debug Module

Nios Il/s Core

Overview

Iz

The Nios I1/f core supports the JTAG debug module to provide a JTAG interface to
software debugging tools. The Nios II/f core supports an optional enhanced interface
that allows real-time trace data to be routed out of the processor and stored in an
external debug probe.

The Nios I MMU does not support the JTAG debug module trace.

The Nios II/s standard core is designed for small core size. On-chip logic and memory
resources are conserved at the expense of execution performance. The Nios II/s core
uses approximately 20% less logic than the Nios II/f core, but execution performance
also drops by roughly 40%. Altera designed the Nios II/s core with the following
design goals in mind:

m Do not cripple performance for the sake of size.

m Remove hardware features that have the highest ratio of resource usage to
performance impact.

The resulting core is optimal for cost-sensitive, medium-performance applications.
This includes applications with large amounts of code and/or data, such as systems
running an operating system in which performance is not the highest priority.

The Nios II/s core:

m Has an instruction cache, but no data cache

m Can access up to 2 GB of external address space

m Supports optional tightly-coupled memory for instructions
m Employs a 5-stage pipeline

m Performs static branch prediction

m Provides hardware multiply, divide, and shift options to improve arithmetic
performance

m Supports the addition of custom instructions

m  Supports the JTAG debug module
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m Supports optional JTAG debug module enhancements, including hardware
breakpoints and real-time trace

The following sections discuss the noteworthy details of the Nios II/s core
implementation. This document does not discuss low-level design issues or
implementation details that do not affect Nios Il hardware or software designers.

Arithmetic Logic Unit

The Nios II/s core provides several ALU options to improve the performance of
multiply, divide, and shift operations.

Multiply and Divide Performance

The Nios II/s core provides the following hardware multiplier options:

m DSP Block—Includes DSP block multipliers available on the target device. This
option is available only on Altera FPGAs that have DSP Blocks.

m Embedded Multipliers—Includes dedicated embedded multipliers available on
the target device. This option is available only on Altera FPGAs that have
embedded multipliers.

m Logic Elements—Includes hardware multipliers built from logic element (LE)
resources.

m None—Does not include multiply hardware. In this case, multiply operations are
emulated in software.

The Nios II/s core also provides a hardware divide option that includes LE-based
divide circuitry in the ALU.

Including an ALU option improves the performance of one or more arithmetic
instructions.

The performance of the embedded multipliers differ, depending on the target FPGA
family.

Table 5-11 lists the details of the hardware multiply and divide options.

Tahle 5-11. Hardware Multiply and Divide Details for the Nios Il/s Core

Cycles per
ALU Option Hardware Details instruction Supported Instructions

No hardware multiply or divide | Multiply and divide instructions - None

generate an exception
LE-based multiplier ALU includes 32 x 4-bit 11 mul , mul i

multiplier
Embedded multiplier on ALU includes 32 x 32-bit 3 mul , mul i, mul xss,
Stratix Il and Stratix IIl families | multiplier nmul xsu, mul xuu
Embedded multiplier on ALU includes 32 x 16-bit 5 nmul , mul i
Cyclone Il and Cyclone 111 multiplier
families
Hardware divide ALU includes multicycle divide 4 - 66 div,divu

circuit
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Shift and Rotate Performance

The performance of shift operations depends on the hardware multiply option. When
a hardware multiplier is present, the ALU achieves shift and rotate operations in three
or four clock cycles. Otherwise, the ALU includes dedicated shift circuitry that
achieves one-bit-per-cycle shift and rotate performance. Refer to Table 5-14 on

page 5-18 for details.

Memory Access
The Nios II/s core provides instruction cache, but no data cache. The instruction
cache size is user-definable, between 512 bytes and 64 KB. The Nios II/s core can
address up to 2 gigabytes (GB) of external memory. The Nios II architecture reserves
the most-significant bit of data addresses for the bit-31 cache bypass method. In the
Nios II/s core, bit 31 is always zero.
-

«® For information regarding data cache bypass methods, refer to the Processor
Architecture chapter of the Nios II Processor Reference Handbook.

Instruction and Data Master Ports

The instruction port on the Nios II/s core is optional. The instruction master port can
be excluded, as long as the core includes at least one tightly-coupled instruction
memory. The instruction master port is a pipelined Avalon-MM master port.

Support for pipelined Avalon-MM transfers minimizes the impact of synchronous
memory with pipeline latency. The pipelined instruction master port can issue
successive read requests before prior requests complete.

The data master port on the Nios II/s core is always present.

Instruction Cache

The instruction cache for the Nios II/s core is nearly identical to the instruction cache
in the Nios II/f core. The instruction cache memory has the following characteristics:

m Direct-mapped cache implementation

m  The instruction master port reads an entire cache line at a time from memory, and
issues one read per clock cycle.

m Critical word first

Table 5-12 shows the instruction byte address fields.
Table 5-12. Instruction Byte Address Fields
31‘30‘29‘28‘27‘26|25|24|23|22‘21‘20‘19 18‘17‘16‘15‘14‘13‘12‘11‘10‘ 9 | 8 | 7 | 6 | 5| 4 ‘ 3 ‘ 2 ‘ 1 ‘ 1}
tag line offset

The size of the tag field depends on the size of the cache memory and the physical
address size. The size of the line field depends only on the size of the cache memory.
The offset field is always five bits (i.e., a 32-byte line). The maximum instruction byte
address size is 31 bits.

The instruction cache is optional. However, excluding instruction cache from the
Nios II/s core requires that the core include at least one tightly-coupled instruction
memory.
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Tightly-Coupled Memory

The Nios II/s core provides optional tightly-coupled memory interfaces for
instructions. A Nios II/s core can use up to four tightly-coupled instruction
memories. When a tightly-coupled memory interface is enabled, the Nios II core
includes an additional memory interface master port. Each tightly-coupled memory
interface must connect directly to exactly one memory slave port.

When tightly-coupled memory is present, the Nios II core decodes addresses
internally to determine if requested instructions reside in tightly-coupled memory. If
the address resides in tightly-coupled memory, the Nios II core fetches the instruction
through the tightly-coupled memory interface. Software does not require awareness
of whether code resides in tightly-coupled memory or not.

Accessing tightly-coupled memory bypasses cache memory. The processor core
functions as if cache were not present for the address span of the tightly-coupled
memory. Instructions for managing cache, such asi niti and fl ushi, do not affect
the tightly-coupled memory, even if the instruction specifies an address in
tightly-coupled memory.

Execution Pipeline

This section provides an overview of the pipeline behavior for the benefit of
performance-critical applications. Designers can use this information to minimize
unnecessary processor stalling. Most application programmers never need to analyze
the performance of individual instructions.

The Nios II/s core employs a 5-stage pipeline. The pipeline stages are listed in
Table 5-13.

Table 5-13. Implementation Pipeline Stages for Nios Il/s Core

Stage Letter Stage Name
F Fetch
D Decode
E Execute
M Memory
w Writeback

Up to one instruction is dispatched and/or retired per cycle. Instructions are
dispatched and retired in-order. Static branch prediction is implemented using the
branch offset direction; a negative offset (backward branch) is predicted as taken, and
a positive offset (forward branch) is predicted as not-taken. The pipeline stalls for the
following conditions:

m  Multi-cycle instructions (e.g., shift/rotate without hardware multiply)
B Avalon-MM instruction master port read accesses
m Avalon-MM data master port read /write accesses

m Data dependencies on long latency instructions (e.g., load, multiply, shift
operations)
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Pipeline Stalls

The pipeline is set up so that if a stage stalls, no new values enter that stage or any
earlier stages. No “catching up” of pipeline stages is allowed, even if a pipeline stage
is empty.

Only the M-stage is allowed to create stalls.
The M-stage stall occurs if any of the following conditions occurs:

m  An M-stage load/store instruction is waiting for Avalon-MM data master transfer
to complete.

B An M-stage shift/rotate instruction is still performing its operation when using
the multi-cycle shift circuitry (i.e., when the hardware multiplier is not available).

®m  An M-stage shift/rotate/multiply instruction is still performing its operation
when using the hardware multiplier (which takes three cycles).

B An M-stage multi-cycle custom instruction is asserting its stall signal. This only

occurs if the design includes multi-cycle custom instructions.

Branch Prediction

The Nios II/s core performs static branch prediction to minimize the cycle penalty
associated with taken branches.

Instruction Performance

All instructions take one or more cycles to execute. Some instructions have other
penalties associated with their execution. Instructions that flush the pipeline cause up
to three instructions after them to be cancelled. This creates a three-cycle penalty and
an execution time of four cycles. Instructions that require an Avalon-MM transfer are
stalled until the transfer completes.

Execution performance for all instructions is shown in Table 5-14.

Table 5-14. Instruction Execution Performance for Nios Il/s Core (Part 1 of 2)

Instruction Cycles Penalties
Normal ALU instructions (e.g., add, cnpl t ) 1
Combinatorial custom instructions 1
Multi-cycle custom instructions >1

Branch (correctly predicted taken)

2

Branch (correctly predicted not taken) 1
Branch (mispredicted) 4 Pipeline flush

4

trap, break,eret,bret, Pipeline flush
flushp,wr ctl,unimplemented

jmp,jnpi,ret,call,callr 4 Pipeline flush
rdctl 1

| oad,store >1

flushi,initi 4

Multiply (1)

Divide (1)
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Table 5-14. Instruction Execution Performance for Nios Il/s Core (Part 2 of 2)

Instruction Cycles Penalties
Shift/rotate (with hardware multiply using embedded 3
multipliers)
Shift/rotate (with hardware multiply using LE-based multipliers) 4
Shift/rotate (without hardware multiply present) 11032
All other instructions 1

Note to Table 5-14:
(1) Depends on the hardware multiply or divide option. Refer to Table 5-11 on page 5-15 for details.

Exception Handling
The Nios II/s core supports the following exception types:
m Internal hardware interrupt
m Software trap
m Illegal instruction

m Unimplemented instruction

JTAG Debug Module

The Nios II/s core supports the JTAG debug module to provide a JTAG interface to
software debugging tools. The Nios II/s core supports an optional enhanced interface
that allows real-time trace data to be routed out of the processor and stored in an
external debug probe.

Nios Il/e Core

The Nios II/e economy core is designed to achieve the smallest possible core size.
Altera designed the Nios II/e core with a singular design goal: reduce resource
utilization any way possible, while still maintaining compatibility with the Nios II
instruction set architecture. Hardware resources are conserved at the expense of
execution performance. The Nios II/e core is roughly half the size of the Nios II/s
core, but the execution performance is substantially lower.

The resulting core is optimal for cost-sensitive applications as well as applications that
require simple control logic.

Overview
The Nios II/e core:
m Executes at most one instruction per six clock cycles
m Can access up to 2 GB of external address space
m Supports the addition of custom instructions
m  Supports the JTAG debug module

m Does not provide hardware support for potential unimplemented instructions
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m Has no instruction cache or data cache
m Does not perform branch prediction

The following sections discuss the noteworthy details of the Nios II/e core
implementation. This document does not discuss low-level design issues, or
implementation details that do not affect Nios Il hardware or software designers.

Arithmetic Logic Unit

Memory Access

The Nios II/e core does not provide hardware support for any of the potential
unimplemented instructions. All unimplemented instructions are emulated in
software.

The Nios II/e core employs dedicated shift circuitry to perform shift and rotate
operations. The dedicated shift circuitry achieves one-bit-per-cycle shift and rotate
operations.

The Nios II/e core does not provide instruction cache or data cache. All memory and
peripheral accesses generate an Avalon-MM transfer. The Nios II/e core can address

up to 2 GB of external memory. The Nios II architecture reserves the most-significant
bit of data addresses for the bit-31 cache bypass method. In the Nios II/e core, bit 31 is
always zero.

For information regarding data cache bypass methods, refer to the Processor
Architecture chapter of the Nios II Processor Reference Handbook.

Instruction Execution Stages

This section provides an overview of the pipeline behavior as a means of estimating
assembly execution time. Most application programmers never need to analyze the
performance of individual instructions.

Instruction Performance

The Nios II/e core dispatches a single instruction at a time, and the processor waits
for an instruction to complete before fetching and dispatching the next instruction.
Because each instruction completes before the next instruction is dispatched, branch
prediction is not necessary. This greatly simplifies the consideration of processor
stalls. Maximum performance is one instruction per six clock cycles. To achieve six
cycles, the Avalon-MM instruction master port must fetch an instruction in one clock
cycle. A stall on the Avalon-MM instruction master port directly extends the execution
time of the instruction.
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Execution performance for all instructions is shown in Table 5-15.

Table 5-15. Instruction Execution Performance for Nios Il/e Core

Instruction Cycles

Normal ALU instructions (e.g., add,cnplt) |6

branch,jnp,jnpi,ret,call,callr 6

trap, break,eret,bret,
flushp,wctl,rdctl,
unimplemented

| oad word 6 + Duration of Avalon-MM read transfer

| oad hal fword 9 + Duration of Avalon-MM read transfer

| oad byte 10 + Duration of Avalon-MM read transfer
store 6 + Duration of Avalon-MM write transfer
Shift, rotate 71038

All other instructions 6

Combinatorial custom instructions 6

Multi-cycle custom instructions S6

Exception Handling
The Nios II/e core supports the following exception types:
m Internal hardware interrupt
m Software trap
m Illegal instruction

m Unimplemented instruction

JTAG Debug Module

The Nios II/e core supports the JTAG debug module to provide a JTAG interface to
software debugging tools. The JTAG debug module on the Nios II/e core does not
support hardware breakpoints or trace.

Referenced Documents

This chapter references the following documents:

m [nstruction Set Reference chapter of the Nios II Processor Referenice Handbook

m  Processor Architecture chapter of the Nios II Processor Reference Handbook

m  Programming Model chapter of the Nios II Processor Reference Handbook

m  Vectored Interrupt Controller chapter in the Embedded Peripherals IP User Guide
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Document Revision History

Table 5-16 shows the revision history for this document.

Tahle 5-16. Document Revision History

Date & Document

Version Changes Made Summary of Changes
July 2010 m Updated device support nomenclature Global change to Altera IP
v10.0.0 m Corrected HardCopy support information device support

nomenclature
November 2009 m Added external interrupt controller interface information. Added shadow register sets
v9.1.0 = Added shadow register set information. and external interrupt
controller support
March 2009 Maintenance release. —
v9.0.0
November 2008 Maintenance release. —
v8.1.0
May 2008 Added text for MMU and MPU. Added MMU and MPU
v8.0.0
October 2007 Added j npi instruction to tables. —
v7.2.0
May 2007 m Added table of contents to Introduction section. —
v7.1.0 m Added Referenced Documents section.
March 2007 Add preliminary Cyclone Il device family support Cyclone Il device family
v7.0.0
November 2006 Add preliminary Stratix Il device family support Stratix 11l device family
v6.1.0
May 2006 Performance for f | ushi andi ni ti instructions changes from 1 to —
v6.0.0 4 cycles for Nios Il/s and Nios 11/f cores.
October 2005 Maintenance release. —
v5.1.0
May 2005 Updates to Nios II/f and Nios II/s cores. Added tightly-coupled memory —
v5.0.0 and new data cache options. Corrected cycle counts for shift/rotate
operations.

December 2004 Updates to Multiply and Divide Performance section for Nios II/f and —
vio Nios Il/s cores.
September 2004 Updates for Nios 11 1.01 release. —
vi.1
May 2004 Initial release. —
v1.0
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= B 6. Nios Il Processor Revision History

Introduction

Each release of the Nios® Il Embedded Design Suite (EDS) introduces improvements
to the Nios II processor, the software development tools, or both. This document
catalogs the history of revisions to the Nios II processor; it does not track revisions to
development tools, such as the Nios Il integrated development environment (IDE).
This chapter contains the following sections:

m “Nios II Versions” on page 6-1

m  “Architecture Revisions” on page 6-2

m “Core Revisions” on page 6-3

m “JTAG Debug Module Revisions” on page 6—6
Improvements to the Nios II processor might affect:

m Features of the Nios II architecture—An example of an architecture revision is
adding instructions to support floating-point arithmetic.

m Implementation of a specific Nios II core—An example of a core revision is
increasing the maximum possible size of the data cache memory for the Nios II/f
core.

m  Features of the JTAG debug module—An example of a JTAG debug module
revision is adding an additional trigger input to the JTAG debug module, allowing
it to halt processor execution on a new type of trigger event.

Altera implements Nios II revisions such that code written for an existing Nios II core
also works on future revisions of the same core.

Nios Il Versions

The number for any version of the Nios II processor is determined by the version of
the Nios II EDS. For example, in the Nios II EDS version 8.0, all Nios II cores are also
version 8.0.

Table 6-1 lists the version numbers of all releases of the Nios II processor.

Table 6-1. Nios Il Processor Revision History (Part 1 of 2)

Version Release Date Notes
10.0 July 2010 No changes.
9.1 November 2009 m Added optional external interrupt controller interface.
m Added optional shadow register sets.
9.0 March 2009 No changes.
8.1 November 2008 No changes.

© July 2010  Altera Corporation Nios Il Processor Reference Handbook



6-2

Chapter 6: Nios Il Processor Revision History
Architecture Revisions

Table 6-1. Nios Il Processor Revision History (Part 2 of 2)

Version Release Date Notes
8.0 May 2008 = Added an optional memory management unit (MMU).
m Added an optional memory protection unit (MPU).
m Added advanced exception checking.
m Added the i ni t da instruction.
7.2 October 2007 Added the j npi instruction.
71 May 2007 No changes.
7.0 March 2007 No changes.
6.1 November 2006 No changes.
6.0 May 2006 The name Nios Il Development Kit describing the software development tools
changed to Nios Il Embedded Design Suite.
5.1 SP1 January 2006 Bug fix for Nios Il/f core.
5.1 October 2005 No changes.
5.0 May 2005 m Changed version nomenclature. Altera now aligns the Nios Il processor
version with Altera's Quartus® Il software version.
m Memory structure enhancements:
(1) Added tightly-coupled memory.
(2) Made data cache line size configurable.
(3) Made cache optional in Nios I1/f and Nios Il/s cores.
m Support for HardCopye devices.
1.1 December 2004 m Minor enhancements to the architecture: Added cpui d control register,
and updated the br eak instruction.
m Increased user control of multiply and shift hardware in the arithmetic
logic unit (ALU) for Nios Il/s and Nios II/f cores.
m Minor bug fixes.
1.01 September 2004 m Minor bug fixes.
1.0 May2004 Initial release of the Nios Il processor.

Architecture Revisions

Architecture revisions augment the fundamental capabilities of the Nios II
architecture, and affect all Nios II cores. A change in the architecture mandates a
revision to all Nios II cores to accommodate the new architectural enhancement. For
example, when Altera adds a new instruction to the instruction set, Altera
consequently must update all Nios II cores to recognize the new instruction. Table 6-2
lists revisions to the Nios II architecture.

Tahle 6-2. Nios Il Architecture Revisions (Part 1 of 2)

Version Release Date Notes
10.0 July 2010 No changes.
9.1 November 2009 m Added optional external interrupt controller interface.
m Added optional shadow register sets.
9.0 March 2009 No changes.
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Table 6-2. Nios Il Architecture Revisions (Part 2 of 2)

Version Release Date Notes
8.1 November 2008 No changes.
8.0 May 2008 m Added an optional MMU.

m Added an optional MPU.

m Added advanced exception checking to detect division errors, illegal
instructions, misaligned memory accesses, and provide extra exception
information.

m Added the i ni t da instruction.

72 October 2007 Added the j npi instruction.

71 May 2007 No changes.

7.0 March 2007 No changes.

6.1 November 2006 No changes.

6.0 May 2006 Added optional cpu_r eset r equest and cpu_r eset t aken signals to all
processor cores.

5.1 October 2005 No changes.

5.0 May 2005 Added the f | ushda instruction.

1.1 December 2004 m Added cpui d control register.

m Updated br eak instruction specification to accept an immediate argument
for use by debugging tools.

1.01 September 2004 No changes.
1.0 May 2004 Initial release of the Nios Il processor architecture.

Core Revisions

Core revisions introduce changes to an existing Nios II core. Core revisions most
commonly fix identified bugs, or add support for an architecture revision. Not every
Nios II core is revised with every release of the Nios II architecture.

Nios II/f Core

Table 6-3 lists revisions to the Nios II/f core.

Table 6-3. Nios II/f Core Revisions (Part 1 of 2)

Version Release Date Notes
10.0 July 2010 No changes.
9.1 November 2009 = Added optional external interrupt controller interface.
m Added optional shadow register sets.
9.0 March 2009 No changes.
8.1 November 2008 No changes.
8.0 May 2008 = Implemented the optional MMU.

= Implemented the optional MPU.
m Implemented advanced exception checking.
m Implemented the i ni t da instruction.

© July 2010 Altera Corporation
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Table 6-3. Nios II/f Core Revisions (Part 2 of 2)

Version Release Date Notes

7.2 October 2007 Implemented the j npi instruction.

71 May 2007 No changes.

7.0 March 2007 No changes.

6.1 November 2006 No changes.

6.0 May 2006 Cycle countforf 1 ushi andi ni ti instructions changes from 1 to 4 cycles.

5.1 SP1 January 2006 Bug Fix:

Back-to-back store instructions can cause memory corruption to the stored data.

If the first store is not to the last word of a cache line and the second store is to the

last word of the line, memory corruption occurs.

5.1 October 2005 No changes.

5.0 May 2005 m Added optional tightly-coupled memory ports. Designers can add zero to four
tightly-coupled instruction master ports, and zero to four tightly-coupled data
master ports.

m Made the data cache line size configurable. Designers can configure the data
cache with the following line sizes: 4, 16, or 32 bytes. Previously, the data
cache line size was fixed at 4 bytes.

m Made instruction and data caches optional (previously, cache memories were
always present). If the instruction cache is not present, the Nios Il core does
not have an instruction master port, and must use a tightly-coupled instruction
memory.

m Support for HardCopy devices (previous versions required a workaround to
support HardCopy devices).

1.1 December 2004 m Added user-configurable options affecting multiply and shift operations. Now
designers can choose one of three options:

(1) Use embedded multiplier resources available in the target device family
(previously available).

(2) Use logic elements to implement multiply and shift hardware (new option).
(3) Omit multiply hardware. Shift operations take one cycle per bit shifted;
multiply operations are emulated in software (new option).

m Added cpui d control register.

m Bug Fix:

Interrupts that were disabled by wr ct | i enabl e remained enabled for one
clock cycle following the wr ct | instruction. Now the instruction following
suchawr ct | cannot be interrupted.

1.01 September 2004 m Bug Fixes:

(1) When a store to memory is followed immediately in the pipeline by a load
from the same memory location, and the memory location is held in the data
cache, the load may return invalid data. This situation can occur in C code
compiled with optimization off (-00).

(2) The SOPC Builder top-level system module included an extra, unnecessary
output port for systems with very small address spaces.

1.0 May 2004 Initial release of the Nios II/f core.

Nios Il Processor Reference Handbook
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Nios ll/s Core

Table 6-4. Nios Il/s Core Revisions

Table 64 lists revisions to the Nios II/s core.

Version Release Date Notes
10.0 July 2010 No changes.
9.1 November 2009 No changes.
9.0 March 2009 No changes.
8.1 November 2008 No changes.
8.0 May 2008 Implemented the illegal instruction exception.
7.2 October 2007 Implemented the j npi instruction.
71 May 2007 No changes.
7.0 March 2007 No changes.
6.1 November 2006 No changes.
6.0 May 2006 Cycle count for f 1 ushi andi ni ti instructions changes from 1 to 4 cycles.
5.1 October 2005 No changes.
5.0 May 2005 m Added optional tightly-coupled memory ports. Designers can add zero to four
tightly-coupled instruction master ports.

m Made instruction cache optional (previously instruction cache was always
present). If the instruction cache is not present, the Nios Il core does not have an
instruction master port, and must use a tightly-coupled instruction memaory.

m Support for HardCopy devices (previous versions required a workaround to
support HardCopy devices).

1.1 December 2004 m Added user-configurable options affecting multiply and shift operations. Now
designers can choose one of three options:
(1) Use embedded multiplier resources available in the target device family
(previously available).
(2) Use logic elements to implement multiply and shift hardware (new option).
(3) Omit multiply hardware. Shift operations take one cycle per bit shifted;
multiply operations are emulated in software (new option).

m Added user-configurable option to include divide hardware in the ALU. Previously
this option was available for only the Nios I/f core.

m Added cpui d control register.

1.01 September 2004 Bug fix:
The SOPC Builder top-level system module included an extra, unnecessary output
port for systems with very small address spaces.

1.0 May 2004 Initial release of the Nios Il/s core.

© July 2010 Altera Corporation
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Nios ll/e Core

Table 6-5. Nios Il/e Core Revisions

Table 6-5 lists revisions to the Nios II/e core.

Version Release Date Notes

10.0 July 2010 No changes.

9.1 November 2009 No changes.

9.0 March 2009 No changes.

8.1 November 2008 No changes.

8.0 May 2008 Implemented the illegal instruction exception.

7.2 October 2007 Implemented the j npi instruction.

71 May 2007 No changes.

7.0 March 2007 No changes.

6.1 November 2006 No changes.

6.0 May 2006 No changes.

5.1 October 2005 No changes.

5.0 May 2005 Support for HardCopy devices (previous versions required a workaround to support
HardCopy devices).

1.1 December 2004 Added cpui d control register.

1.01 September 2004 Bug fix:
The SOPC Builder top-level system module included an extra, unnecessary output
port for systems with very small address spaces.

1.0 May 2004 Initial release of the Nios Il/e core.

JTAG Debug Module Revisions

JTAG debug module revisions augment the debug capabilities of the Nios II
processor, or fix bugs isolated within the JTAG debug module logic.

Table 6-6 lists revisions to the JTAG debug module.

Table 6-6. JTAG Debug Module Revisions (Part 1 of 2)

Version Release Date Notes
10.0 July 2010 No changes.
9.1 November 2009 No changes.
9.0 March 2009 No changes.
8.1 November 2008 No changes.
8.0 May 2008 No changes.
7.2 October 2007 No changes.
71 May 2007 No changes.
7.0 March 2007 No changes.
6.1 November 2006 No changes.
6.0 May 2006 No changes.
5.1 October 2005 No changes.

Nios Il Processor Reference Handbook
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Table 6-6. JTAG Debug Module Revisions (Part 2 of 2)

Version Release Date Notes
5.0 May 2005 Support for HardCopy devices (previous versions of the JTAG debug module did not
support HardCopy devices).
1.1 December 2004 Bug fix:

When using the Nios Il/s and Nios I1/f cores, hardware breakpoints may have falsely
triggered when placed on the instruction sequentially following aj rmp, t r ap, or any
branch instruction.

1.01 September 2004 m Feature enhancements:

(1) Added the ability to trigger based on the instruction address. Uses include
triggering trace control (trace on/off), sequential triggers, and trigger in/out
signal generation.

(2) Enhanced trace collection such that collection can be stopped when the trace
buffer is full without halting the Nios Il processor.

(3) Armed triggers — Enhanced trigger logic to support two levels of triggers, or
"armed triggers"; enabling the use of "Event A then event B" trigger definitions.

m Bug fixes:

(1) On the Nios II/s core, trace data sometimes recorded incorrect addresses
during interrupt processing.

(2) Under certain circumstances, captured trace data appeared to start earlier or
later than the desired trigger location.

(3) During debugging, the processor would hang if a hardware breakpoint and an
interrupt occurred simultaneously.

1.0 May 2004 Initial release of the JTAG debug module.

Referenced Documents

This chapter references no other documents.

Document Revision History

Table 6-7 shows the revision history for this document.

Table 6-7. Document Revision History (Part 1 of 2)

Date & Document

Version Changes Made Summary of Changes
July 2010 Maintenance release. —
v10.0.0
November 2009 m Added external interrupt controller interface information. Added shadow register sets
v9.1.0 m Added shadow register set information. and external interrupt

controller support

March 2009 Maintenance release. —
v9.0.0
November 2008 Maintenance release. —
v8.1.0
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Table 6-7. Document Revision History (Part 2 of 2)

Date & Document

Version Changes Made Summary of Changes
May 2008 m Added MMU information. Added MMU, MPU,
v8.0.0 = Added MPU information. advanced exception
) o ) checking, and i ni t da
m Added advanced exception checking information. instruction.
m Added i ni t da instruction information.
October 2007 m Added j npi instruction information. Added j mpi instruction
v7.2.0 m Added exception handling information.
May 2007 m Updated tables to reflect no changes to cores. —
v7.1.0 m Added table of contents to Introduction section.
m Added Referenced Documents section.
March 2007 Updated tables to reflect no changes to cores. —
v7.0.0
November 2006 Updated tables to reflect no changes to cores. —
v6.1.0
May 2006 Updates for Nios Il cores version 6.0. —
v6.0.0
October 2005 Updates for Nios Il cores version 5.1. —
v5.1.0
May 2005 Updates for Nios Il cores version 5.0. —
v5.0.0
December 2004 Updates for Nios Il cores version 1.1. —
viA
September 2004 Initial release. —
v1.0
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1. Application Binary Interface

Data Types

This chapter describes the Application Binary Interface (ABI) for the Nios® II
processor. The ABI describes:

How data is arranged in memory
Behavior and structure of the stack

Function calling conventions

This chapter contains the following sections:

“Data Types” on page 7-1

“Memory Alignment” on page 7-2

“Register Usage” on page 7-2

“Stacks” on page 7-3

“Arguments and Return Values” on page 7-7

“Relocation” on page 7-9

Table 7-1 shows the size and representation of the C/C++ data types for the Nios I
processor.

Table 7-1. Representation of Data Types

Type Size (Bytes) Representation
char, signed char 1 two’s complement (ASCII)
unsigned char 1 binary (ASCII)
short, signed short 2 two’s complement
unsigned short 2 binary
int, signed int 4 two’s complement
unsigned int 4 binary
long, signed long 4 two’s complement
unsigned long 4 binary
float 4 IEEE
double 8 IEEE
pointer 4 binary
long long 8 two’s complement
unsigned long long 8 binary

© July 2010  Altera Corporation
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Memory Alignment

Contents in memory are aligned as follows:

m A function must be aligned to a minimum of 32-bit boundary.

® The minimum alignment of a data element is its natural size. A data element larger
than 32 bits need only be aligned to a 32-bit boundary.

m Structures, unions, and strings must be aligned to a minimum of 32 bits.

m Bit fields inside structures are always 32-bit aligned.

Register Usage

The ABI adds additional usage conventions to the Nios II register file defined in the
Programming Model chapter of the Nios II Processor Reference Handbook. The ABI uses
the registers as shown in Table 7-2.

Table 7-2. Nios Il ABI Register Usage (Part 1 of 2)

Register

Used by
Compiler

Callee
Saved (1)

Normal Usage

ro

zero

<

0x00000000

rl

at

Assembler temporary

r2

Return value (least-significant 32 bits)

r3

Return value (most-significant 32 bits)

rd

Register arguments (first 32 bits)

r5

Register arguments (second 32 bits)

ré

Register arguments (third 32 bits)

r7

Register arguments (fourth 32 bits)

r8

r9

r10

ril

ri2

ri13

rl4

ris

Caller-saved general-purpose registers

r16

ril7

ri8

r19

r20

r21

NAAYRAY

r22

)

r23

SISTSTSTSTSSTSTSSSTSTSSTCSTSS TS CKS

(3)

Callee-saved general-purpose registers

r24

et

Exception temporary
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Stacks

Table 7-2. Nios Il ABI Register Usage (Part 2 of 2)

Used by Callee

Register | Name | Compiler | Saved (7) Normal Usage

r25 bt Break temporary

r26 ap v Global pointer

r27 sp v Stack pointer

r28 fp v (4) Frame pointer

r29 ea Exception return address

r30 ba m Normal register set: Break return address
m Shadow register sets: SSTATUS register

r3i ra v Return address

Notes to Tahle 7-2:

(1) Afunction can use one of these registers if it saves it first. The function must restore the register’s original value
before exiting.

(2) Inthe GNU Linux operating system, r 22 points to the global offset table (GOT). Otherwise, it is available as a
callee-saved general-purpose register.

(3) Inthe GNU Linux operating system, r 23 is used as the thread pointer. Otherwise, it is available as a callee-saved
general-purpose register.

(4) If the frame pointer is not used, the register is available as a callee-saved temporary register. Refer to “Frame
Pointer Elimination” on page 7-4.

The endianness of values greater than 8 bits is little endian. The upper 8 bits of a value
are stored at the higher byte address.

Stacks

The stack grows downward (i.e. towards lower addresses). The stack pointer points to
the last used slot. The frame pointer points to the saved frame pointer near the top of
the stack frame.

Figure 7-1 shows an example of the structure of a current frame. In this case, function
a() calls function b() , and the stack is shown before the call and after the prologue in
the called function has completed.

© July 2010 Altera Corporation Nios Il Processor Reference Handbook
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Figure 7-1. Stack Pointer, Frame Pointer and the Current Frame

In function aQ) In function b()
Just prior to calling b() Just after executing prologue
Higher addresses
Outgoing Incoming
stack stack Allpcatﬁd anlﬁ frefed by aQ
arguments arguments (i.e. the calling function)

Stack pointer —p»|

Return address

Saved frame
Frame pointer —p» pointer

Other saved
registers

Space for

stack Allocated and freed by b()
temporaries (i.e. the current function)

Space for
outgoing
stack

) arguments
Stack pointer —p» Y

Lower addresses

Each section of the current frame is aligned to a 32-bit boundary. The ABI requires the
stack pointer be 32-bit aligned at all times.

Frame Pointer Elimination

The frame pointer is provided for debugger support. If you are not using a debugger,
you can optimize your code by eliminating the frame pointer, using the

-fom t-frame-poi nt er compiler option. When the frame pointer is eliminated,
register f p is available as a temporary register.

Call Saved Registers

The compiler is responsible for saving registers that need to be saved in a function. If
there are any such registers, they are saved on the stack, from high to low addresses,
in the following order:ra,fp,r2,r3,r4,r5,r6,r7,r8,r9,r10,r11,r12,r 13,
r14,r15,r16,r17,r18,r19,r20,r21,r22,r 23,r 24,r 25, gp, and sp. Stack space
is not allocated for registers that are not saved.

Further Examples of Stacks

There are a number of special cases for stack layout, which are described in this
section.

Nios Il Processor Reference Handbook © July 2010 Altera Corporation
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I

Stack Frame for a Function With alloca()

The Nios II stack frame implementation provides support for the al | oca() function,
defined in the Berkeley Software Distribution (BSD) extension to C, and implemented
by the gcc compiler. Figure 7-2 depicts what the frame looks like after al | oca() is
called. The space allocated by al | oca() replaces the outgoing arguments and the
outgoing arguments get new space allocated at the bottom of the frame.

The Nios II C/C++ compiler maintains a frame pointer for any function that calls
al l oca(),evenif-fomit-frame-pointer isspecifed

Figure 7-2. Stack Frame after Calling alloca()

Before After calling alloca()
higher addresses
space for N .
outgoing \
stack AN
arguments N memory
Sp —P»| N allocated
N AR by
AN N alloca()
N N . \ N
\ \
N \
\ N
\
N space for
AR outgoing
\ stack
b arguments
N —sp
lower addresses

© July 2010 Altera Corporation

Stack Frame for a Function with Variable Arguments

Functions that take variable arguments (var ar gs) still have their first 16 bytes of
arguments arriving in registers r 4 through r 7, just like other functions.

In order for var ar gs to work, functions that take variable arguments allocate 16 extra
bytes of storage on the stack. They copy to the stack the first 16 bytes of their
arguments from registers r 4 through r 7 as shown in Figure 7-3.
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Figure 7-3. Stack Frame Using Variable Arguments

Stack pointer —p»|

In function aQ) In function bQ)
Just prior to calling bQ) Just after executing prologue
Higher addresses —Mm8@™™Mm8 ¥ —-------------- " — — — — — — — — —
Outgoing Incoming Allocated and freed by a()
stack stack ) ; .
(i.e. the calling function)
arguments arguments
Copy of r7
Copy of r6
Copy of 15
Copy of r4

Return address

Saved frame

Frame pointer —p»| pointer

Other saved

registers
Allocated and freed by bQ)
(i.e. the current function)
Space for
stack

temporaries

Space for
outgoing
stack

Stack pointer —p»| arguments

Lower addresses | [T oo L - - - - - =

Stack Frame for a Function with Structures Passed By Value

Functions that take st r uct value arguments still have their first 16 bytes of
arguments arriving in registers r 4 through r 7, just like other functions.

If part of a structure is passed using registers, the function might need to copy the
register contents back to the stack. This operation is similar to that required in the
variable arguments case as shown in Figure 7-3.

Function Prologues

The Nios II C/C++ compiler generates function prologues that allocate the stack
frame of a function for storage of stack temporaries and outgoing arguments. In
addition, each prologue is responsible for saving the state of the calling function. This
entails saving certain registers on the stack. These registers, the callee-saved registers,
are listed in Table 7-2 on page 7-2. A function prologue is required to save a
callee-saved register only if the function uses the register.

Given the function prologue algorithm, when doing a back trace, a debugger can
disassemble instructions and reconstruct the processor state of the calling function.

An even better way to find out what the prologue has done is to use information
stored in the DWARF-2 debugging fields of the executable and linkable format (.elf)
file.
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The instructions found in a Nios II function prologue perform the following tasks:
B Adjust the stack pointer (to allocate the frame)

m Store registers to the frame

m Set the frame pointer to the location of the saved frame pointer

Example 7-1 shows a function prologue.

Example 7-1. A function prologue

/* Adjust the stack pointer */

addi sp, sp, -16 /* make a 16-byte frame */

/* Store registers to the frame */

stw ra, 12(sp) /* store the return address */
stw fp, 8(sp) /* store the frame pointer*/

stw rl6, 4(sp) /* store call ee-saved register */
stw rl7, O(sp) /* store callee-saved register */
/* Set the new frame pointer */

addi fp, sp, 8

Prologue Variations

The following variations can occur in a prologue:

m If the function’s frame size is greater than 32,767 bytes, extra temporary registers
are used in the calculation of the new stack pointer as well as for the offsets of
where to store callee-saved registers. The extra registers are needed because of the
maximum size of immediate values allowed by the Nios II processor.

m If the frame pointer is not in use, the final instruction, recalculating the frame
pointer, is not generated.

m If variable arguments are used, extra instructions store the argument registers on
the stack.

m If the compiler designates the function as a leaf function, the return address is not
saved.

m If optimizations are on, especially instruction scheduling, the order of the
instructions might change and become interlaced with instructions located after
the prologue.

Arguments and Return Values

Arguments

This section discusses the details of passing arguments to functions and returning
values from functions.

The first 16 bytes to a function are passed in registers r 4 through r 7. The arguments
are passed as if a structure containing the types of the arguments were constructed,
and the first 16 bytes of the structure are located in r 4 through r 7.

© July 2010 Altera Corporation Nios Il Processor Reference Handbook
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Return Values

A simple example:
int function (int a, int b);

The equivalent structure representing the arguments is:
struct { int a; int b; };

The first 16 bytes of the st r uct are assigned to r 4 through r 7. Therefore r 4 is
assigned the value of a and r 5 the value of b.

The first 16 bytes to a function taking variable arguments are passed the same way as
a function not taking variable arguments. The called function must clean up the stack
as necessary to support the variable arguments. Refer to “Stack Frame for a Function
with Variable Arguments” on page 7-5.

Return values of types up to 8 bytes are returned in r 2 and r 3. For return values
greater than 8 bytes, the caller must allocate memory for the result and must pass the
address of the result memory as a hidden zero argument.

The hidden zero argument is best explained through an example.

Example 7-2. Returned struct

/* b() conmputes a structure-type result and returns it */

STRUCT b(int i, int j)
{
.réiurn resul t;
}
void a(...)
{
;/éiuezb(i, i)
}

In Example 7-2, if the result type is no larger than 8 bytes, b() returns its resultinr 2
and r 3.

If the return type is larger than 8 bytes, the Nios II C/C++ compiler treats this
program as if a() had passed a pointer to b() . Example 7-3 shows how the Nios II
C/C++ compiler sees the code in Example 7-2.
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Example 7-3. Returned struct is Larger than 8 Bytes

void b(STRUCT *p_result, int j)
{
;b._r esult = result;
}
void a(...)
STRUCT val ue;
b.(;*val ue, i, j);
}
DWARF-2 Definition

Registers r 0 through r 31 are assigned numbers 0 through 31 in all DWARF-2

debugging sections.

Object Files

Nios II object file headers contain Nios II-specific values as shown in Table 7-3.

Table 7-3. Nios II-Specific ELF Header Values

Member Value
e_ident[El _CLASS] ELFCLASS32
e_ident[ El _DATA] ELFDATA2LSB

e_machi ne

EM ALTERA NI OS2 == 113

Relocation

In a Nios II object file, each relocatable address reference possesses a relocation type.
The relocation type specifies how to calculate the relocated address.Table 7—4 lists the
calculation for address relocation for each Nios II relocation type. The bit mask
specifies where the address is found in the instruction.

Table 7-4. Nios Il Relocation Calculation (Part 1 of 3)

Overflow Relocated Address Bit Mask Bit Shift

Name Value | check (7) R (2) M B
R_NIOS2_NONE 0 n/a None n/a n/a
R_NI0S2_S16 1 Yes S+A 0x003FFFCO 6
R_NI0S2_U16 2 Yes S+A 0x003FFFCO 6
R_NIOS2_PCREL16 3 Yes ((S+A)-4)-PC 0x003FFFCO 6
R_NI0S2_CALL26 4 No (S+A)>>2 OXFFFFFFCO 6
R_NI0S2_IMM5 5 Yes (S+A) & 0x1F 0x000007C0 6
R_NI0S2_CACHE_OPX 6 Yes (S+A) &O0x1F 0x07C00000 22
R_NI0S2_IMM6 7 Yes (S +A) & Ox3F 0x00000FCO 6

© July 2010 Altera Corporation
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Tahle 7-4. Nios Il Relocation Calculation (Part 2 of 3)
Overflow Relocated Address Bit Mask Bit Shift
Name Value | check (7) R(2) M B

R_NIOS2_IMM3 8 Yes (S +A) & OxFF 0x00003FCO 6

R_NIOS2_HI16 9 No ((S +A) >>16) & OXFFFF 0x003FFFCO 6

R_NIOS2_L016 10 No (S + A) & OxFFFF 0x003FFFCO 6

R_NIOS2_HIADJ16 11 No Adj(S+A) 0x003FFFCO 6

R_NIOS2_BFD_RELOG_32 12 No S+A OXFFFFFFFF 0

R_NIOS2_BFD_RELOC_16 13 Yes (S + A) & OxFFFF 0x0000FFFF 0

R_NIOS2_BFD_RELOC_8 14 Yes (S +A) & OxFF 0x000000FF 0

R_NIOS2_GPREL 15 No (S + A—GP) & OxFFFF 0x003FFFCO 6

R_NIOS2_GNU_VTINHERIT 16 n/a None n/a n/a

R_NIOS2_GNU_VTENTRY 17 n/a None n/a n/a

R_NIOS2_UJMP 18 No ((S +A) >>16) & OxFFFF, 0x003FFFCO 6
(S + A +4) & OxFFFF

R_NI0OS2_CJMP 19 No ((S +A) >> 16) & OxFFFF, 0x003FFFCO 6
(S + A +4) & OxFFFF

R_NIOS2_CALLR 20 No ((S +A) >> 16) & OxFFFF) 0x003FFFCO 6
(S + A +4) & OxFFFF

R_NIOS2_ALIGN 21 n/a None n/a n/a

R_NI0S2_GOT16 (3) 22 Yes G 0x003FFFCO 6

R_NIOS2_CALL16 (3) 23 Yes G 0x003FFFCO 6

R_NIOS2_GOTOFF_LO (3) 24 No (S + A—GOT) & OxFFFF 0x003FFFCO 6

R_NIOS2_GOTOFF_HA (3) 25 No Adj (S + A-GOT) 0x003FFFCO 6

R_NIOS2_PCREL_LO (3) 26 No (S + A—PC) & OxFFFF 0x003FFFCO 6

R_NIOS2_PCREL_HA (3) 27 No Adj (S +A-PC) 0x003FFFCO 6

R_NIOS2_TLS_GD16 (3) 28 Yes See “Thread-Local Storage” on 0x003FFFCO 6
page 13

R_NIOS2_TLS_LDM16 (3) 29 Yes See “Thread-Local Storage” on 0x003FFFCO 6
page 13

R_NIOS2_TLS_LDO16 (3) 30 Yes See “Thread-Local Storage” on 0x003FFFCO 6
page 13

R_NIOS2_TLS_IE16 (3) 31 Yes See “Thread-Local Storage” on 0x003FFFCO 6
page 13

R_NIOS2_TLS_LE16 (3) 32 Yes See “Thread-Local Storage” on 0x003FFFCO 6
page 13

R_NIOS2_TLS_DTPMOD (3) 33 No See “Thread-Local Storage” on OXFFFFFFFF 0
page 13

R_NIOS2_TLS_DTPREL (3) 34 No See “Thread-Local Storage” on OXFFFFFFFF 0
page 13

R_NIOS2_TLS_TPREL (3) 35 No See “Thread-Local Storage” on OXFFFFFFFF 0
page 13

R_NI0S2_COPY (3) 36 No See “Copy Relocation” on n/a n/a

page 7-13
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Table 7-4. Nios Il Relocation Calculation (Part 3 of 3)

Overflow Relocated Address Bit Mask Bit Shift
Name Value | check (7) R(2) M B
R_NI0S2_GLOB_DAT (3) 37 No S OXFFFFFFFF 0
R_NI0S2_JUMP_SLOT (3) 38 No See “Jump Slot Relocation” on OXFFFFFFFF 0
page 7-13
R_NIOS2_RELATIVE (3) 39 No BA+A OXFFFFFFFF 0
R_NI0S2_GOTOFF (3) 40 No S+A OXFFFFFFFF 0
R_NIOS2_ILLEGAL 22 n/a None n/a n/a

Notes to Table 7-4:

(1) For relocation types where no overflow check is performed, the relocated address is truncated to fit the instruction.
(2) Expressions in this column use the following conventions:

S: Symbol address

A: Addend

PC: Program counter

GP: Global pointer

Adj(X): (((X >> 16) & OXFFFF) + ((X >> 15) & 0x1)) & OxFFFF

BA: The base address at which a shared library is loaded

GOT: The value of the Global Offset Table (GOT) pointer (Linux only)
G: The offset into the GOT for the GOT slot for symbol S (Linux only)
(3) Relocation support is provided for Linux systems.

With the information in Table 7—4, any Nios II instruction can be relocated by
manipulating it as an unsigned 32-bit integer, as follows:

X =(( R<s<B) &M| ( X & ~M));

where:

m R is the relocated address, calculated as shown in Table 74
m B is the bit shift shown in Table 7-4

B M is the bit mask shown in Table 74

m Xis the original instruction

m Xr is the relocated instruction

© July 2010 Altera Corporation Nios Il Processor Reference Handbook
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Linux Toolchain Relocation Information

Dynamic relocations can appear in the runtime relocation sections of executables and
shared objects, but never appear in object files (with the exception of
R_NIOS2_TLS_DTPREL, which is used for debug information). No other relocations
are dynamic. The dynamic relocations are shown in Table 7-5.

Table 7-5. Dynamic Relocations
R_NI0OS2_TLS_DTPMOD
R_NIOS2_TLS_DTPREL
R_NIOS2_TLS_TPREL
R_NIOS2_COPY
R_NIOS2_GLOB_DAT
R_NI0S2_JUMP_SLOT
R_NIOS2_RELATIVE

A Global Offset Table (GOT) entry referenced using R_NIOS2_GOT16 must be
resolved at load time. A GOT entry referenced only using R_NIOS2_CALL16 can
initially refer to a Procedure Linkage Table (PLT) entry and then be resolved lazily.

Because the GOTrelative and TP-relative relocations are 16-bit relocations, no single
object file can require more than 64 kilobytes (KB) of GOT and no dynamic object
using Local Dynamic or Local Executable thread-local storage (TLS) can have more
than 64 KB of TLS data. New relocations might be added to support this in the future.

Several new assembler operators are defined to generate the Linux-specific
relocations, as shown in Table 7-6.

Table 7-6.

Relocation Operator
R_NIOS2_GOT16 9got
R_NIOS2_CALL16 %al |
R_NIOS2_GOTOFF_LO 9got of f _hi adj
R_NI0S2_GOTOFF_HA 9gotoff | o
R_NIOS2_PCREL_LO o%i adj
R_NIOS2_PCREL_HA % o
R_NIOS2_TLS_GD16 %!|s_qgd
R_NIOS2_TLS_LDM16 % | s_|dm
R_NIOS2_TLS_LDO16 %|s_Ildo
R_NIOS2_TLS_IE16 %ls_ie
R_NIOS2_TLS_LE16 %ls_le
R_NIOS2_TLS_DTPREL % | s_|do
R_NI0S2_GOTOFF %got of f

Nios Il Processor Reference Handbook
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The %hi adj and %l o operators generate PC-relative or non-PC-relative relocations,
depending whether the expression being relocated is PC-relative. For

instance, %hi adj (_gp_got - .) generates R_NIOS2_PCREL_HA. %t | s_I do
generates R_NIOS2_TLS_LDO16 when used as an immediate operand, and
R_NIOS2_TLS_DTPREL when used with the . wor d directive.

Copy Relocation

The R_NIOS2_COPY relocation is used to mark variables allocated in the executable
that are defined in a shared library. The variable’s initial value is copied from the
shared library to the relocated location.

Jump Slot Relocation

Jump slot relocations are used for the Procedure Linkage Table.

Thread-Local Storage

The Nios II processor uses the Variant I model for thread-local storage. The end of the
Thread Control Block (TCB) is located 0x7000 bytes before the thread pointer. The TCB
is eight bytes long. The first word is the DTV pointer and the second word is reserved.
Each module’s dynamic thread pointer is biased by 0x8000 (when retrieved using
__tls_get_addr). The thread library can store additional private information
before the TCB.

In the GNU Linux toolchain, the GOT pointer (_gp_got ) is always kept inr 22, and
the thread pointer is always kept in r 23.

In the following examples, any registers can be used, except that the argument to
__tls_get_addr is always passed in r 4 and its return value is always returned in
r2.Callsto__tls_get_addr must use the normal position-independent code (PIC)
calling convention in PIC code; these sequences are for example only, and the
compiler might generate different sequences. No linker relaxations are defined.

Example 7-4 shows the General Dynamic model.

Example 7-4. General Dynamic Model

addi r4, r22, %Il s_gd(x) # R_
cal | __tls_get_addr # R_
# Address of x in r2

0S2_TLS GD16 x

NI
NI OS2_CALL26 __tls_get _addr

In the General Dynamic model, a two-word GOT slot is allocated for X, as shown in
Example 7-5.

Example 7-5. GOT Slot for General Dynamic Model

GOT[ n] R_NI 0S2_TLS_DTPMOD x
GOT[ n+1] R_NI 0S2_TLS_DTPREL x

© July 2010 Altera Corporation Nios Il Processor Reference Handbook
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Example 7-6 shows the Local Dynamic model.

Example 7-6. Local Dynamic Model

addi r4, r22, %l s_ldmx) #
cal | __tls_get_addr #
addi r5, r2, %ls_ldo(x) #
# Address of x in r5
| dw rée, %ls_Ildo(x2)(r2) #
# Value of x2 inr6

R Nl OS2_TLS_LDML6 x
R NI OS2_CALL26 _ tls_get_addr
R NI OS2_TLS LDO16 x

R N

| 0S2_TLS_LDOL6 x2

One 2-word GOT slot is allocated for all R_NIOS2_TLS_LDM16 operations in the
linked object. Any thread-local symbol in this object can be used, as shown in
Example 7-7.

Example 7-7. GOT Slot with Thread-Local Storage

GOT[ n] R NI OS2_TLS_DTPMD x
GOT[ n+1] 0

Example 7-8 shows the Initial Exec model.

Example 7-8. Initial Exec Model

| dw r4, %l s_ie(x)(r22) # R_NIOS2_TLS | E16 x
add rd, r23, r4
# Address of x in r4

A single GOT slot is allocated to hold the offset of x from the thread pointer, as shown
in Example 7-9.

Example 7-9. GOT Slot for Initial Exec Model
GOT[ n] R Nl 0S2_TLS TPREL x

Example 7-10 shows the Local Exec model.

Example 7-10. Local Exec Model

addi r4, r23, %ls_le(x) # R_NIOS2_TLS LE16 x
# Address of x inr4

There is no GOT slot associated with the Local Exec model.

Debug information uses the GNU extension DW_OP_GNU_push_tls_address, as
shown in Example 7-11.

Example 7-11. Debug Information

. byte 0x03 # DW . OP_addr
.word % s_|do(x) # R_NI OS2_TLS DTPREL x
. byte 0xe0 # DW OP_GNU push_t| s_address

Nios Il Processor Reference Handbook © July 2010 Altera Corporation
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Development Environment
The following symbols are defined:
® _ nios2
®E _ _nios2__
m _ _NOs2
B NOs2__

Referenced Documents

This chapter references the following document: the Programming Model chapter of the

Nios II Processor Reference Handbook.

Document Revision History

Table 7-7 shows the revision history for this document.

Table 7-7. Document Revision History (Part 1 of 2)

Date & Document
Version Changes Made Summary of Changes

July 2010 m DWARF-2 register assignments —
v10.0.0 m ELF header values

m r 23 used as thread pointer for Linux

m Linux toolchain relocation information

m Symbol definitions for development environment
November 2009 No change. —
v.9.1.0
March 2009 Backwards-compatible change to the er et instruction B field —
v9.0.0 encoding.
November 2008 Maintenance release. —
v8.1.0
May 2008 Frame pointer description updated Frame pointer
v8.0.0 Relocation table added implementation redefined
October 2007 Maintenance release. —
v7.2.0
May 2007 m Added table of contents to Introduction section. —
v7.1.0 m Added Referenced Documents section.
March 2007 Maintenance release. —
v7.0.0
November 2006 Maintenance release. —
v6.1.0
May 2006 Maintenance release. —
v6.0.0

© July 2010 Altera Corporation

Nios Il Processor Reference Handbook


http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf

7-16

Chapter 7: Application Binary Interface
Document Revision History

Table 7-7. Document Revision History (Part 2 of 2)

Date & Document
Version

Changes Made

Summary of Changes

October 2005 Maintenance release.
v5.1.0

May 2005 Maintenance release.
v5.0.0

May 2004 Initial release.
v1.0
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Introduction

=/ 8. Instruction Set Reference

This section introduces the Nios® II instruction word format and provides a detailed
reference of the Nios II instruction set. This chapter contains the following sections:

“Word Formats” on page 8-1

“Instruction Opcodes” on page 8-2
“Assembler Pseudo-Instructions” on page 8-3
“Assembler Macros” on page 8—4

“Instruction Set Reference” on page 8-5

Word Formats

I-Type

31 30

29

28

27

There are three types of Nios Il instruction word format: I-type, R-type, and J-type.

The defining characteristic of the I-type instruction word format is that it contains an
immediate value embedded within the instruction word. I-type instructions words
contain:

m A 6-bit opcode field OP
m  Two 5-bit register fields A and B
m A 16-bit immediate data field IMM16

In most cases, fields A and IMM16 specify the source operands, and field B specifies
the destination register. IMM16 is considered signed except for logical operations and
unsigned comparisons.

I-type instructions include arithmetic and logical operations such as addi and andi ;
branch operations; load and store operations; and cache management operations.

The I-type instruction format is:

26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 543 210

A

B IMM16 oP

© July 2010  Altera Corporation

R-Type

The defining characteristic of the R-type instruction word format is that all arguments
and results are specified as registers. R-type instructions contain:

B A 6-bit opcode field OP
m Three 5-bit register fields A, B, and C
®m  An 11-bit opcode-extension field OPX
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In most cases, fields A and B specify the source operands, and field C specifies the
destination register.

Some R-Type instructions embed a small immediate value in the five low-order bits of
OPX. Unused bits in OPX are always 0.

R-type instructions include arithmetic and logical operations such as add and nor ;
comparison operations such as cnpeq and cnpl t ; the cust ominstruction; and other
operations that need only register operands.

The R-type instruction format is:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
\ A \ B C OPX oP

J-Type
J-type instructions contain:
m A 6-bit opcode field
m A 26-bit immediate data field

J-type instructions, such as cal | and j npi, transfer execution anywhere within a
256-MB range.

The J-type instruction format is:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
\ IMMED26 oP

Instruction Opcodes

The OP field in the Nios II instruction word specifies the major class of an opcode as
shown in Table 8-1 and Table 8-2. Most values of OP are encodings for I-type
instructions. One encoding, OP = 0x00, is the J-type instruction cal | . Another
encoding, OP = 0x3a, is used for all R-type instructions, in which case, the OPX field
differentiates the instructions. All undefined encodings of OP and OPX are reserved.

Table 8-1. OP Encodings (Part 1 of 2)

oP Instruction oP Instruction oP Instruction oP Instruction
0x00 |call 0x10 |cnplti 0x20 cnpeqi 0x30 |cnpl tui
0x01 || npi Ox11 0x21 0x31
0x02 0x12 0x22 0x32 custom
0x03 | dbu 0x13 i nitda 0x23 | dbui o 0x33 |initd
0x04 | addi 0x14 |ori 0x24 mul i 0x34 |orhi
0x05 |sthb 0x15 |stw 0x25 stbio 0x35 |stw o
0x06 |br 0x16 bl t 0x26 beq 0x36 |bltu
0x07 I db 0x17 | dw 0x27 | dbi o 0x37 | dwi o
0x08 cnpgei 0x18 cnpnei 0x28 cnpgeui 0x38 rdprs
0x09 0x19 0x29 0x39
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Table 8-1. OP Encodings (Part 2 of 2)

oP Instruction oP Instruction oP Instruction oP Instruction
Ox0A Ox1A 0x2A 0x3A | R-type
0x0B |l dhu 0x1B |flushda 0x2B | dhui o 0x3B |flushd
0x0C |andi 0x1C |xori 0x2C andhi 0x3C | xorhi
0xOD |sth 0x1D 0x2D sthio 0x3D
OxO0E |bge Ox1E |bne 0x2E bgeu 0x3E
OxOF |Idh Ox1F O0x2F I dhi o O0x3F
Table 8-2. OPX Encodings for R-Type Instructions

OPX Instruction OPX Instruction OPX Instruction OPX Instruction
0x00 0x10 |cnplt 0x20 |cnpeq 0x30 cnpltu
0x01 eret 0x11 0x21 0x31 add
0x02 roli 0x12 |slli 0x22 0x32
0x03 rol 0x13 |sll 0x23 0x33
0x04 flushp 0x14 |wprs 0x24 |divu 0x34 br eak
0x05 ret 0x15 0x25 |div 0x35
0x06 nor 0x16 |or 0x26 |rdctl 0x36 sync
0x07 mul xuu 0x17 | mul xsu 0x27 | mul 0x37
0x08 cnpge 0x18 |cnpne 0x28 |cnpgeu 0x38
0x09 br et 0x19 0x29 |initi 0x39 sub
0x0A Ox1A |srli 0x2A 0x3A srai
0x0B ror 0x1B |srl 0x2B 0x3B sra
0x0C flushi 0x1C |nextpc 0x2C 0x3C
0x0D jmp 0x1D |callr 0x2D |trap 0x3D
0xO0E and Ox1E |xor Ox2E |wrctl Ox3E
OxOF Ox1F | nmul xss 0x2F 0x3F

Assembler Pseudo-Instructions

Table 8-3 lists pseudo-instructions available in Nios II assembly language.
Pseudo-instructions are used in assembly source code like regular assembly
instructions. Each pseudo-instruction is implemented at the machine level using an
equivalent instruction. The nmovi a pseudo-instruction is the only exception, being
implemented with two instructions. Most pseudo-instructions do not appear in
disassembly views of machine code.

Table 8-3. Assembler Pseudo-Instructions (Part 1 of 2)

Pseudo-Instruction Equivalent Instruction
bgt rA, rB, |abel blt rB, rA, | abel
bgtu rA, rB, |abel bltu rB, rA |abel
ble rA rB, |abel bge rB, rA, |abel
bleu rA rB, |abel bgeu rB, rA | abel

© July 2010 Altera Corporation
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Table 8-3. Assembler Pseudo-Instructions (Part 2 of 2)

Pseudo-Instruction Equivalent Instruction
cnpgt rC, rA rB cmplt rC, rB, rA
cnpgti rB, rA | MVED cnpgei rB, rA (I MWED+1)
cnmpgtu rC, rA rB cnpltu rC, rB, rA
cnpgtui rB, rA | MVED cnpgeui rB, rA (1 MVED+1)
cnple rC, rA rB cnpge rC, rB, rA
cnplei rB, rA | MVED cnplti rB, rA (I MED+L)
cnpleu rC, rA rB cnpgeu rC, rB, rA
cnpleui rB, rA | MED cnpltui rB, rA (1 MVED+1)
mov rC, rA add rC, rA rO
nmovhi rB, | MMED orhi rB, r0, | MVED
movi rB, | MVED addi, rB, r0, | MVED
nmovi a rB, | abel orhi rB, r0, %i adj(Ilabel)

addi, rB, r0, % o(l abel)

movui rB, | MMED ori ro, | MVeD
nop add r0, r0, rO
subi rB, rA, | MVED addi rB, rA, (-1 MVED)

Assembler Macros

The Nios II assembler provides macros to extract halfwords from labels and from
32-bit immediate values. Table 8—4 lists the available macros. These macros return
16-bit signed values or 16-bit unsigned values depending on where they are used.
When used with an instruction that requires a 16-bit signed immediate value, these
macros return a value ranging from -32768 to 32767. When used with an instruction
that requires a 16-bit unsigned immediate value, these macros return a value ranging

from 0 to 65535.

Table 8-4. Assembler Macros

Macro Description Operation
% o(i nmed32) Extract bits [15..0] of immed32 immed32 & OxFFFF
%i (i med32) Extract bits [31..16] of immed32 (immed32 >> 16) & OxFFFF

%i adj (i med32)

Extract bits [31..16] and adds bit 15 of immed32

((immed32 >> 16) & OxFFFF) +
((immed32 >> 15) & 0x1)

%gpr el (i med32)

Replace the immed32 address with an offset from
the global pointer (7)

immed32 —_gp

Note to Table 8-4:

(1) Refer to the Application Binary Interface chapter of the Nios Il Processor Reference Handbook for more information about global pointers.
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Instruction Set Reference

The following pages list all Nios II instruction mnemonics in alphabetical order.
Table 8-5 shows the notation conventions used to describe instruction operation.

Table 8-5. Notation Conventions

Notation

X<Y

X is written with Y

PC <X

The program counter (PC) is written with address X; the instruction at X is
the next instruction to execute

PC

The address of the assembly instruction in question

rA, 1B, rC

One of the 32-bit general-purpose registers

prs.rA

General-purpose register rA in the previous register set

IMM~n

An n-bit immediate value, embedded in the instruction word

IMMED

An immediate value

Xn

The nth bit of X, where n=0is the LSB

Xn..m

Consecutive bits nthrough m of X

OXNNMM

Hexadecimal notation

XY

Bitwise concatenation
For example, (0x12 : 0x34) = 0x1234

o (X)

The value of X after being sign-extended to a full register-sized signed integer

X>>n

The value X after being right-shifted n bit positions

X<<n

The value X after being left-shifted n bit positions

X&Y

Bitwise logical AND

XY

Bitwise logical OR

XMY

Bitwise logical XOR

~X

Bitwise logical NOT (one’s complement)

Mem8[X]

The byte located in data memory at byte address X

Mem16[X]

The halfword located in data memory at byte address X

Mem32[X]

The word located in data memory at byte address X

label

An address label specified in the assembly file

(signed) rX

The value of rX treated as a signed number

(unsigned) rX

The value of rX treated as an unsigned number

Note to Table 8-5:

(1) All register operations apply to the current register set, except as noted.

The following exceptions are not listed for each instruction because they can occur on
any instruction fetch:

m Supervisor-only instruction address

m Fast TLB miss (instruction)

m Double TLB miss (instruction)

m TLB permission violation (execute)

m MPU region violation (instruction)

© July 2010 Altera Corporation
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“®.e For details on these and all Nios II exceptions, refer to the Programming Model chapter

of the Nios II Processor Reference Handbook.
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add add
Operation: rCrA+rB
Assembler Syntax: add rC, rA rB
Description: Calculates the sum of rA and rB. Stores the result in rC. Used for both signed and unsigned
addition.
Usage: Carry Detection (unsigned operands):

Following an add operation, a carry out of the MSB can be detected by checking whether the
unsigned sum is less than one of the unsigned operands. The carry bit can be written to a
register, or a conditional branch can be taken based on the carry condition. Both cases are

shown below.

add rC, rA rB
cnpltu rD, rC, rA

add rC, rA rB
bltu rC, rA | abel

Overflow Detection (signed operands):

The original add operation
rDis witten with the carry bit

The original add operation
Branch if carry generated

An overflow is detected when two positives are added and the sum is negative, or when two
negatives are added and the sum is positive. The overflow condition can control a conditional

branch, as shown below.

add rC, rA rB
xor rD, rC, rA
xor rE, rC, rB
and rD, rD, rE
blt rD, rO,]label

Exceptions: None

Instruction Type: R

Instruction Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17

A = Register index of operand rA
B = Register index of operand rB
C = Register index of operand rC

The original add operation
Conpare signs of sumand rA
Conpare signs of sumand rB
Conbi ne conpari sons

Branch if overfl ow occurred

14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

A B C

0x31 0 0x3a

© July 2010 Altera Corporation

Nios Il Processor Reference Handbook



8-8

Chapter 8: Instruction Set Reference
Instruction Set Reference

Operation:
Assembler Syntax:
Example:

Description:

Usage:

Exceptions:

Instruction Type:

Instruction Fields:

add immediate

B <—rA + o (IMM16)
addi rB, rA, | M6
addi r6, r7, -100

Sign-extends the 16-bit immediate value and adds it to the value of rA. Stores the sum in rB.

Carry Detection (unsigned operands):

Following an addi operation, a carry out of the MSB can be detected by checking whether the
unsigned sum is less than one of the unsigned operands. The carry bit can be written to a
register, or a conditional branch can be taken based on the carry condition. Both cases are
shown below.

addi rB, rA | MVL6 ; The original add operation
cnmpltu rD, rB, rA ; rDis witten with the carry bit
addi rB, rA | MVL6 ; The original add operation
bltu rB, rA, |abel ; Branch if carry generated

Overflow Detection (signed operands):

An overflow is detected when two positives are added and the sum is negative, or when two
negatives are added and the sum is positive. The overflow condition can control a conditional
branch, as shown below.

addi rB, rA, | M6 ; The original add operation

xor rC, rB, rA ; Conpare signs of sumand rA
xorhi rD, rB, | MVL6 ; Conpare signs of sumand | MML6
and rC, rC, rD ; Conbi ne conpari sons

blt rC, ro0,]I abel : Branch if overfl ow occurred
None

A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0O

A

B IMM16 0x04
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and bitwise logical and
Operation: rC«rA&rB
Assembler Syntax: and rC, rA rB
Example: and r6, r7, r8
Description: Calculates the bitwise logical AND of rA and rB and stores the result in rC.

Exceptions: None
Instruction Type: R
Instruction Fields: A = Register index of operand rA

B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A B C 0x0e 0 0x3a
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andhi bitwise logical and immediate into high halfword
Operation: rB <—rA & (IMM16 : 0x0000)

Assembler Syntax: andhi rB, rA, | MIL6

Example: andhi r6, r7, 100

Description: Calculates the bitwise logical AND of rA and (IMM16 : 0x0000) and stores the result in rB.
Exceptions: None

Instruction Type: '
Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A B IMM16 0x2c
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andi bitwise logical and immediate
Operation: rB <—rA & (0x0000 : IMM16)

Assembler Syntax: andi rB, rA 1ML6

Example: andi r6, r7, 100

Description: Calculates the bitwise logical AND of rA and (0x0000 : IMM16) and stores the result in rB.
Exceptions: None

Instruction Type: '
Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A B IMM16 0x0c
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Operation:

Assembler Syntax:

Example:

Description:

Exceptions:

Instruction Type:

Instruction Fields:

31

branch if equal

if (rA ==B)

then PC <~ PC + 4 + o (IMM16)
else PC «<PC + 4

beq rA B, |abel

beq r6, r7, |abel

If rA == rB, then beq transfers program control to the instruction at label. In the instruction
encoding, the offset given by IMM16 is treated as a signed number of bytes relative to the
instruction immediately following beq. The two least-significant bits of IMM16 are always
zero, because instruction addresses must be word-aligned.

Misaligned destination address

A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

30 29 28 27 2 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0O

A

B IMM16 0x26
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Instruction Set Reference

Operation:

Assembler Syntax:
Example:

Description:

Exceptions:

Instruction Type:

Instruction Fields:

31 30 29 28 27 26 25

branch if greater than or equal signed

if ((signed) rA >= (signed) rB)
then PC <~PC + 4 + o (IMM16)
else PC«<PC+4

bge rA rB, |abel

bge r6, r7, top_of | oop

If (signed) rA >= (signed) rB, then bge transfers program control to the instruction at label. In
the instruction encoding, the offset given by IMM16 is treated as a signed number of bytes
relative to the instruction immediately following bge. The two least-significant bits of IMM16
are always zero, because instruction addresses must be word-aligned.

Misaligned destination address

A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 S5 4 3 2 1 0O

A

B IMM16 0x0e

© July 2010 Altera Corporation
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Operation:

Assembler Syntax:
Example:

Description:

Exceptions:

Instruction Type:

Instruction Fields:

31 30 29 28 27 26 25

branch if greater than or equal unsigned

if ((unsigned) rA >= (unsigned) rB)
then PC <—PC + 4 + 5 (IMM16)
else PC«<PC+4

bgeu rA, rB, |abel

bgeu r6, r7, top_of_|oop

If (unsigned) rA >= (unsigned) rB, then bgeu transfers program control to the instruction at
label. In the instruction encoding, the offset given by IMM16 is treated as a signed number of
bytes relative to the instruction immediately following bgeu. The two least-significant bits of
IMM16 are always zero, because instruction addresses must be word-aligned.

Misaligned destination address

A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 S5 4 3 2 1 0O

A

B IMM16 0x2e
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hgt branch if greater than signed

Operation: if ((signed) rA > (signed) rB)
then PC «label
else PC < PC + 4

Assembler Syntax: bgt rA rB, |abel

Example: bgt r6, r7, top_of | oop

Description: I (signed) rA > (signed) rB, then bgt transfers program control to the instruction at label.
Pseudo-instruction: bgt is implemented with the bl t instruction by swapping the register operands.
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hgtu

Operation:

Assembler Syntax:
Example:

Description:

Pseudo-instruction:

branch if greater than unsigned

if ((unsigned) rA > (unsigned) rB)
then PC «label

else PC «<PC + 4

bgtu rA, rB, |abel

bgtu r6, r7, top_of _|oop

If (unsigned) rA > (unsigned) rB, then bgt u transfers program control to the instruction at
label.

bgt u is implemented with the bl t u instruction by swapping the register operands.
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ble branch if less than or equal signed

Operation: if ((signed) rA <= (signed) rB)
then PC <« label
else PC«<PC +4

Assembler Syntax: ble rA rB, |abel

Example: ble r6, r7, top_of _| oop

Description: If (signed) rA <= (signed) rB, then bl e transfers program control to the instruction at label.
Pseudo-instruction: bl e is implemented with the bge instruction by swapping the register operands.
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bleu branch if less than or equal to unsigned
Operation: if ((unsigned) rA <= (unsigned) rB)
then PC « label
else PC < PC + 4
Assembler Syntax: blleu rA rB, |abel
Example: bleu r6, r7, top_of | oop
Description: If (unsigned) rA <= (unsigned) B, then bl eu transfers program counter to the instruction at

Pseudo-instruction:

label.
bl eu is implemented with the bgeu instruction by swapping the register operands.
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bit branch if less than signed

Operation: if ((signed) rA < (signed) rB)
then PC <~PC + 4 + ¢ (IMM16)
else PC«PC +4

Assembler Syntax: blt rA rB, |abel
Example: blt r6, r7, top_of | oop
Description: If (signed) rA < (signed) rB, then bl t transfers program control to the instruction at label. In

the instruction encoding, the offset given by IMM16 is treated as a signed number of bytes
relative to the instruction immediately following bl t . The two least-significant bits of IMM16
are always zero, because instruction addresses must be word-aligned.

Exceptions: Misaligned destination address

Instruction Type: '

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A B IMM16 0x16

© July 2010 Altera Corporation Nios Il Processor Reference Handbook



8-20 Chapter 8: Instruction Set Reference
Instruction Set Reference

bltu branch if less than unsigned

Operation: if ((unsigned) rA < (unsigned) rB)
then PC <~ PC + 4 + 5 (IMM16)
else PC < PC +4

Assembler Syntax: bltu rA rB, |abel
Example: bltur6, r7, top_of_|oop
Description: If (unsigned) rA < (unsigned) rB, then bl t u transfers program control to the instruction at

label. In the instruction encoding, the offset given by IMM16 is treated as a signed number of
bytes relative to the instruction immediately following bl t u. The two least-significant bits of
IMM16 are always zero, because instruction addresses must be word-aligned.

Exceptions: Misaligned destination address

Instruction Type: '

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
MM16 = 16-bit signed immediate value

31 30 20 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 138 12 11 10 8 8 7 6 5 4 3 2 1 0
A B IMM16 0x36
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bne branch if not equal

Operation: if (rA 1= rB)
then PC < PC + 4 + & (IMM16)

else PC «<PC +4

Assembler Syntax: bne rA rB, |abel
Example: bne r6, r7, top_of _| oop
Description: If rA !=rB, then bne transfers program control to the instruction at label. In the instruction

encoding, the offset given by IMM16 is treated as a signed number of bytes relative to the
instruction immediately following bne. The two least-significant bits of IMM16 are always
zero, because instruction addresses must be word-aligned.

Exceptions: Misaligned destination address
Instruction Type: '
Instruction Fields: A = Register index of operand rA

B = Register index of operand rB
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A B IMM16 Ox1e
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br unconditional branch
Operation: PC < PC + 4 + o (IMM16)

Assembler Syntax: br | abel

Example: br top_of _| oop

Description: Transfers program control to the instruction at label. In the instruction encoding, the offset

given by IMM16 is treated as a signed number of bytes relative to the instruction immediately
following br. The two least-significant bits of IMM16 are always zero, because instruction
addresses must be word-aligned.

Exceptions: Misaligned destination address

Instruction Type: '

31 30 20 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 8 8 7 6 5 4 3 2 1 0O
0 0 IMM16 0x06
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Instruction Set Reference

break

Operation:

Assembler Syntax:

Example:

Description:

Usage:

Exceptions:

Instruction Type:

Instruction Fields:

debugging breakpoint

bst at us <—st at us

PIE <0

U0

ba «<PC+4

PC «break handler address

br eak

break i mb

br eak

Breaks program execution and transfers control to the debugger break-processing routine.

Saves the address of the next instruction in register ba and saves the contents of the st at us
register in bst at us. Disables interrupts, then transfers execution to the break handler.

The 5-bit immediate field i b is ignored by the processor, but it can be used by the
debugger.

br eak with no argument is the same as br eak 0.

br eak is used by debuggers exclusively. Only debuggers should place br eak in a user
program, operating system, or exception handler. The address of the break handler is specified
at system generation time.

Some debuggers support br eak and br eak 0 instructions in source code. These debuggers
treat the br eak instruction as a normal breakpoint.

Break

R
IMM5 = Type of breakpoint

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0O

0

0 Ox1e 0x34 IMM5 0x3a
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bret breakpoint return

Operation: st at us <bst at us
PC «<ba

Assembler Syntax: br et

Example: br et

Description: Copies the value of bst at us to the st at us register, then transfers execution to the address
inba.

Usage: br et is used by debuggers exclusively and should not appear in user programs, operating

systems, or exception handlers.

Exceptions: Misaligned destination address
Supervisor-only instruction

Instruction Type: R

Instruction Fields: None

31 30 29 28 27 2 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Oxle 0 0 0x09 0 0x3a
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Instruction Set Reference

call

Operation:

Assembler Syntax:

Example:

Description:

Usage:

Exceptions:

Instruction Type:

Instruction Fields:

call subroutine

ra<PC+4

PC <= (PCs1 o5 : IMM26 x 4)
call | abel

call write_char

Saves the address of the next instruction in register r a, and transfers execution to the
instruction at address (PCaq_og : IMM26 x 4).

cal | can transfer execution anywhere within the 256-megabyte (MB) range determined by
PCs4 6. The Nios Il GNU linker does not automatically handle cases in which the address is out
of this range.

None

J
IMM26 = 26-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMM26 0

© July 2010 Altera Corporation
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callr call subroutine in register
Operation: ra<PC+4
PC <A
Assembler Syntax: callr rA
Example: callr r6
Description: Saves the address of the next instruction in the return address register, and transfers execution

to the address contained in register rA.

Usage: cal | r is used to dereference C-language function pointers.
Exceptions: Misaligned destination address

Instruction Type: R

Instruction Fields: A = Register index of operand rA

31 30 20 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 8 8 7 6 5 4 3 2 1 0
A 0 Ox1f Ox1d 0 0x3a
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Instruction Set Reference

cmpeq

Operation:

Assembler Syntax:
Example:

Description:

Usage:

Exceptions:

Instruction Type:

Instruction Fields:

compare equal

if (rA == rB)
then rC <1
else rC <0
cnpeq rC, rA, rB
cnpeq r6, r7, r8

If rA == rB, then stores 1 to rC; otherwise, stores 0 to rC.

cnpeq performs the == operation of the C programming language. Also, cnpeq can be used
to implement the C logical negation operator “!”.

cmpeq rC, rA r0 ; Inplements rC = IrA

None

R

A = Register index of operand rA
B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A

B C 0x20 0 Ox3a

© July 2010 Altera Corporation
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cmpeqi

Operation:

Assembler Syntax:

Example:

Description:

Usage:

Exceptions:

Instruction Type:

Instruction Fields:

31

compare equal immediate

if (rA o (IMM16))

then rB <1

else rB <0

cnpeqi rB, rA | MVLE

crmpeqi r6, r7, 100

Sign-extends the 16-bit immediate value IMM16 to 32 bits and compares it to the value of rA. If
rA == ¢ (IMM16), cnpeqi stores 1 to rB; otherwise stores 0 to rB.

cnpeqi performs the == operation of the C programming language.

None

A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

30 29 28 27 2 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A

B IMM16 0x20
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Chapter 8: Instruction Set Reference 8-29
Instruction Set Reference

cmpge compare greater than or equal signed
Operation: if ((signed) rA >= (signed) rB)
then rC <1
else rC <0
Assembler Syntax: cnpge rC, rA rB
Example: cnpge r6, r7, r8
Description: If rA >=rB, then stores 1 to rC; otherwise stores 0 to rC.
Usage: cnpge performs the signed >= operation of the C programming language.
Exceptions: None

Instruction Type: '

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 8 8 7 6 5 4 3 2 1 0
A B C 0x08 0 0x3a
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cmpgei compare greater than or equal signed immediate
Operation: if ((signed) rA >= (signed)  (IMM16))
then 1B <1
else rB <0
Assembler Syntax: cnpgei rB, rA | M6
Example: crnpgei r6, r7, 100
Description: Sign-extends the 16-bit immediate value IMM16 to 32 bits and compares it to the value of rA. If

rA >= oIMM16), then cnpgei stores 1 to rB; otherwise stores 0 to rB.

Usage: cnpgei performs the signed >= operation of the C programming language.
Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB
IMM16 = 16-bit signed immediate value

31 30 29 28 27 2 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A B IMM16 0x08
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Instruction Set Reference

cmpgeu

Operation:

Assembler Syntax:
Example:
Description:
Usage:

Exceptions:

Instruction Type:

Instruction Fields:

31 30 29 28 27 26

compare greater than or equal unsigned

if ((unsigned) rA >= (unsigned) rB)
then rC <1

else rC <0

cnpgeu rC, rA, rB

cnpgeu r6, r7, r8

If rA >= rB, then stores 1 to rC; otherwise stores 0 to rC.

cnpgeu performs the unsigned >= operation of the C programming language.

None

R

A = Register index of operand rA
B = Register index of operand rB
C = Register index of operand rC

25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0O

A

B C 0x28 0 0x3a
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cmpgeui compare greater than or equal unsigned immediate
Operation: if ((unsigned) rA >= (unsigned) (0x0000 : IMM16))
then rB <1
else rB <0
Assembler Syntax: cnpgeui rB, rA | M6
Example: cnpgeui r6, r7, 100
Description: Zero-extends the 16-bit immediate value IMM16 to 32 bits and compares it to the value of rA. If

rA >= (0x0000 : IMM16), then crpgeui stores 1 to rB; otherwise stores 0 to rB.

Usage: cnpgeui performs the unsigned >= operation of the C programming language.

Exceptions: None

Instruction Type: '
Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit unsigned immediate value

31 30 20 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 8 8 7 6 5 4 3 2 1 0O
A B IMM16 0x28
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Instruction Set Reference

cmpgt

Operation:

Assembler Syntax:
Example:
Description:

Usage:

Pseudo-instruction:

© July 2010 Altera Corporation

compare greater than signed

if ((signed) rA > (signed) rB)
then rC <1

else rC <0

cnpgt rC, rA rB

cnpgt r6, r7, r8
If rA > B, then stores 1 to rC; otherwise stores 0 to rC.

cnpgt performs the signed > operation of the C programming language.

cnpgt is implemented with the cnpl t instruction by swapping its rA and rB operands.
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cmpgti compare greater than signed immediate
Operation: if ((signed) rA > (signed) IMMED)
then rB <1
else rB <0
Assembler Syntax: cnpgti rB, rA | MVED
Description: Sign-extends the immediate value IMMED to 32 bits and compares it to the value of rA. If rA >
o IMMED), then cnpgt i stores 1 to rB; otherwise stores 0 to rB.
Usage: cnpgti performs the signed > operation of the C programming language. The maximum

Pseudo-instruction:

allowed value of IMMED is 32766. The minimum allowed value is —32769.

cnpgt i is implemented using a cnpgei instruction with an IMM16 immediate value of
IMMED + 1.
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Instruction Set Reference

cmpgtu

Operation:

Assembler Syntax:
Example:
Description:

Usage:

Pseudo-instruction:

© July 2010 Altera Corporation

compare greater than unsigned

if ((unsigned) rA > (unsigned) rB)
then rC <1

else rC <0

cnmpgtu rC, rA, B

cnpgtu r6, r7, r8
If rA > B, then stores 1 to rC; otherwise stores 0 to rC.

cpgt u performs the unsigned > operation of the C programming language.

crpgt u is implemented with the cnpl t u instruction by swapping its rA and rB operands.
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cmpgtui

Operation:

Assembler Syntax:
Example:

Description:

Usage:

Pseudo-instruction:

compare greater than unsigned immediate

if ((unsigned) rA > (unsigned) IMMED)
then B < 1

else rB <0

cnpgtui rB, rA | MVED

cnpgtui r6, r7, 100

Zero-extends the immediate value IMMED to 32 bits and compares it to the value of rA. If rA >
IMMED, then cnpgt ui stores 1 to rB; otherwise stores 0 to rB.

cnpgt ui performs the unsigned > operation of the C programming language. The maximum
allowed value of IMMED is 65534. The minimum allowed value is 0.

crpgt ui is implemented using a cnpgeui instruction with an IMM16 immediate value of
IMMED + 1.
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cmple

Operation:

Assembler Syntax:
Example:
Description:

Usage:

Pseudo-instruction:

© July 2010 Altera Corporation

compare less than or equal signed

if ((signed) rA <= (signed) rB)
then rC <1

else rC <0

cnple rC, rA rB

cnple r6, r7, r8
If rA <= B, then stores 1 to rC; otherwise stores 0 to rC.

cpl e performs the signed <= operation of the C programming language.

crpl e is implemented with the cnpge instruction by swapping its rA and rB operands.
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cmplei

Operation:

Assembler Syntax:
Example:

Description:

Usage:

Pseudo-instruction:

compare less than or equal signed immediate

if ((signed) rA < (signed) IMMED)
then rB <1

else rB <0

cnplei rB, rA | MVED

cnplei r6, r7, 100

Sign-extends the immediate value IMMED to 32 bits and compares it to the value of rA. If rA <=
o(IMMED), then cnpl ei stores 1 to rB; otherwise stores 0 to rB.

cnpl ei performs the signed <= operation of the C programming language. The maximum
allowed value of IMMED is 32766. The minimum allowed value is =32769.

cnpl ei isimplemented using a cnpl ti instruction with an IMM16 immediate value of
IMMED + 1.
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cmpleu

Operation:

Assembler Syntax:

Example:

Description:

Usage:

Pseudo-instruction:

© July 2010 Altera Corporation

compare less than or equal unsigned

if ((unsigned) rA < (unsigned) rB)
then rC <1

else rC <0

cnpleu rC, rA rB

cnpleu r6, r7, r8

If rA <= B, then stores 1 to rC; otherwise stores 0 to rC.

cpl eu performs the unsigned <= operation of the C programming language.

cnpl eu is implemented with the cnpgeu instruction by swapping its rA and rB operands.
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cmpleui

Operation:

Assembler Syntax:
Example:

Description:

Usage:

Pseudo-instruction:

compare less than or equal unsigned immediate

if ((unsigned) rA <= (unsigned) IMMED)
then rB <1

else rB <0

cnpleui rB, rA | MED

cnpleui r6, r7, 100

Zero-extends the immediate value IMMED to 32 bits and compares it to the value of rA. If rA <=
IMMED, then cnpl eui stores 1 to rB; otherwise stores 0 to rB.

cnpl eui performs the unsigned <= operation of the C programming language. The maximum
allowed value of IMMED is 65534. The minimum allowed value is 0.

cnpl eui is implemented using a cnpl t ui instruction with an IMM16 immediate value of
IMMED + 1.
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Instruction Set Reference

cmplt

Operation:

Assembler Syntax:
Example:
Description:
Usage:

Exceptions:

Instruction Type:

Instruction Fields:

31 30 29 28 27 26 25

compare less than signed

if ((signed) rA < (signed) rB)
then rC <1

else rC <0

cnplt rC, rA rB

cnplt r6, r7, r8

If rA < IB, then stores 1 to rC; otherwise stores 0 to rC.

cnpl t performs the signed < operation of the C programming language.

None

R

A = Register index of operand rA
B = Register index of operand rB
C = Register index of operand rC

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 S5 4 3 2 1 0O

A

B C 0x10 0 0x3a

© July 2010 Altera Corporation
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cmplti compare less than signed immediate
Operation: if ((signed) rA < (signed) o (IMM16))
then rB <1
else rB <0
Assembler Syntax: cnplti rB, rA |ML6
Example: cnplti r6, r7, 100
Description: Sign-extends the 16-bit immediate value IMM16 to 32 bits and compares it to the value of rA. If

rA < o (IMM16), then cnpl t i stores 1 to rB; otherwise stores 0 to rB.

Usage: crpl ti performs the signed < operation of the C programming language.

Exceptions: None

Instruction Type: '

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

31 30 20 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 8 8 7 6 5 4 3 2 1 0O
A B IMM16 0x10

Nios Il Processor Reference Handbook © July 2010 Altera Corporation



Chapter 8: Instruction Set Reference 8-43

Instruction Set Reference

cmpltu

Operation:

Assembler Syntax:
Example:
Description:
Usage:

Exceptions:

Instruction Type:

Instruction Fields:

31 30 29 28 27 26 25

compare less than unsigned

if ((unsigned) rA < (unsigned) rB)
then rC <1

else rC <0

cnpltu rC, rA rB

cnpltu r6, r7, r8

If rA < B, then stores 1 to rC; otherwise stores 0 to rC.

cnpl t u performs the unsigned < operation of the C programming language.

None

R

A = Register index of operand rA
B = Register index of operand rB
C = Register index of operand rC

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 S5 4 3 2 1 0O

A

B

C 0x30 0 0x3a

© July 2010 Altera Corporation
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cmpltui compare less than unsigned immediate
Operation: if ((unsigned) rA < (unsigned) (0x0000 : IMM16))
then rB <1
else rB <0
Assembler Syntax: cnpltui rB, rA | M6
Example: cnpltui r6, r7, 100
Description: Zero-extends the 16-bit immediate value IMM16 to 32 bits and compares it to the value of rA. If

rA < (0x0000 : IMM16), then crpl t ui stores 1 to rB; otherwise stores 0 to rB.

Usage: cnpl t ui performs the unsigned < operation of the C programming language.

Exceptions: None

Instruction Type: '
Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit unsigned immediate value

31 30 29 28 27 2 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A B IMM16 0x30
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cmpne compare not equal
Operation: if (rA 1= 1B)
then rC <1
else rC <0
Assembler Syntax: cmpne rC, rA 1B
Example: cnpne r6, r7, r8
Description: If rA = rB, then stores 1 to rC; otherwise stores 0 to rC.
Usage: cnpne performs the != operation of the C programming language.

Exceptions: None
Instruction Type: R
Instruction Fields: A = Register index of operand rA

B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 8 8 7 6 5 4 3 2 1 0
A B C 0x18 0 0x3a
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cmpnei compare not equal immediate
Operation: if (rA 1= ¢ (IMM16))
then 1B <1
else rB <0
Assembler Syntax: cnpnei rB, rA | M6
Example: crmpnei r6, r7, 100
Description: Sign-extends the 16-bit immediate value IMM16 to 32 bits and compares it to the value of rA. If

rA I= 6 (IMM16), then cnpnei stores 1 to rB; otherwise stores 0 to rB.

Usage: cnpnei performs the != operation of the C programming language.

Exceptions: None

Instruction Type: '

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

31 30 20 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 8 8 7 6 5 4 3 2 1 0O
A B IMM16 0x18
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custom

Operation:

Assembler Syntax:

Example:

Description:

Usage:

Exceptions:

Instruction Type:

Instruction Fields:

custom instruction

if ¢ ==

then rC «fy(rA, rB, A, B, C)

else @ «fy(rA, rB, A, B, C)

custom N, xC, xA, xB

Where XA means either general purpose register rA, or custom register cA.

customO, c6, r7, r8

The cust omopcode provides access to up to 256 custom instructions allowed by the Nios Il
architecture. The function implemented by a custom instruction is user-defined and is specified
at system generation time. The 8-bit immediate N field specifies which custom instruction to

use. Custom instructions can use up to two parameters, xA and xB, and can optionally write the
result to a register xC.

To access a custom register inside the custom instruction logic, clear the bit readra, readrb, or
writerc that corresponds to the register field. In assembler syntax, the notation cN refers to
register N in the custom register file and causes the assembler to clear the ¢ bit of the opcode.
For example, cust om 0, c¢3, r5, r0 performs custom instruction 0, operating on
general-purpose registers r5 and r0, and stores the result in custom register 3.

None

R

A = Register index of operand A

B = Register index of operand B

C = Register index of operand C

readra = 1 if instruction uses rA, 0 otherwise

readrb = 1 if instruction uses rB, 0 otherwise

writerc = 1 if instruction provides result for rC, 0 otherwise
N = 8-bit number that selects instruction

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A

B C \ra\rb\rc\ N 0x32

© July 2010 Altera Corporation
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div

Operation:
Assembler Syntax:
Example:

Description:

Usage:

Exceptions:

Instruction Type:

Instruction Fields:

divide
rC < rA+rB
divrC rA rB
divr6e, r7, r8

Treating rA and rB as signed integers, this instruction divides rA by rB and then stores the
integer portion of the resulting quotient to rC. After attempted division by zero, the value of rC
is undefined. There is no divide-by-zero exception. After dividing —2147483648 by —1, the
value of rC is undefined (the number +2147483648 is not representable in 32 bits). There is
no overflow exception.

Nios Il processors that do not implement the di v instruction cause an unimplemented
instruction exception.

Remainder of Division:

If the result of the division is defined, then the remainder can be computed in rD using the
following instruction sequence:

divrC rA rB ; The original div operation
mul rD, rC, rB
sub rD, rA, rD ;. rD = renmni nder

Division error
Unimplemented instruction

R

A = Register index of operand rA
B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A

C 0x25 0 0x3a
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divide unsigned

Treating rA and rB as unsigned integers, this instruction divides rA by rB and then stores the

integer portion of the resulting quotient to rC. After attempted division by zero, the value of rC

Nios Il processors that do not implement the di vu instruction cause an unimplemented

If the result of the division is defined, then the remainder can be computed in rD using the

di vu operation

divu

Operation: rC < rA+rB

Assembler Syntax: divurC rA rB

Example: divu r6, r7, r8

Description:
is undefined. There is no divide-by-zero exception.
instruction exception.

Usage: Remainder of Division:
following instruction sequence:
divu rC, rA B ; The ori gi nal
mul rD, rC, rB
sub rD, rA rD ; rD = renmai nder

Unimplemented instruction

Instruction Type: R

Instruction Fields:
B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A = Register index of operand rA

15 14 13 12 11 10

A B C

0x24

© July 2010 Altera Corporation
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eret exception return
Operation: st at us <—est at us
PC <ea
Assembler Syntax: eret
Example: eret
Description: Copies the value of est at us into the st at us register, and transfers execution to the

address in ea.

Usage: Use er et to return from traps, external interrupts, and other exception handling routines. Note
that before returning from hardware interrupt exceptions, the exception handler must adjust the
ea register.

Exceptions: Misaligned destination address

Supervisor-only instruction

Instruction Type: R

Instruction Fields: None

31 30 29 28 27 2 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Ox1d Ox1e 0 0x01 0 0x3a
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flushd flush data cache line
Operation: Flushes the data cache line associated with address rA + o (IMM16).

Assembler Syntax: flushd I MMLE(rA)

Examp'e: flushd - 100( r 6)

Description: If the Nios Il processor implements a direct mapped data cache, f | ushd writes the data cache

line that is mapped to the specified address back to memory if the line is dirty, and then clears
the data cache line. Unlike f | ushda, f | ushd writes the dirty data back to memory even
when the addressed data is not currently in the cache. This process comprises the following
steps:

m Compute the effective address specified by the sum of rA and the signed 16-bit immediate
value.

m |dentify the data cache line associated with the computed effective address. Each data cache
effective address comprises at ag field and al i ne field. When identifying the data cache
line, f I ushd ignores the t ag field and only uses the | i ne field to select the data cache
line to clear.

m Skip comparing the cache line tag with the effective address to determine if the addressed
data is currently cached. Because f | ushd ignores the cache line tag, f | ushd flushes the
cache line regardless of whether the specified data location is currently cached.

m If the data cache line is dirty, write the line back to memory. A cache line is dirty when one or
more words of the cache line have been modified by the processor, but are not yet written to
memory.

m Clear the valid bit for the line.

If the Nios Il processor core does not have a data cache, the f | ushd instruction performs no
operation.

Usage: Use f | ushd to write dirty lines back to memory even if the addressed memory location is not
in the cache, and then flush the cache line. By contrast, refer to “flushda flush data cache
address” on page 8-52, “initd initialize data cache line” on page 8-55, and “initda initialize data
cache address” on page 8-56 for other cache-clearing options.

For more information on data cache, refer to the Cache and Tightly Coupled Memory chapter of
the Nios Il Software Developer’s Handbook.

Exceptions: None

Instruction Type: '
Instruction Fields: A = Register index of operand rA
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 8 8 7 6 5 4 3 2 1 0
A 0 IMM16 0x3b
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flushda

Operation:

Assembler Syntax:

Example:

Description:

Usage:

Exceptions:

Instruction Type:

Instruction Fields:

flush data cache address

Flushes the data cache line currently caching address rA + o (IMM16)
flushda | MMLE(T A)
flushda -100(r6)

If the Nios Il processor implements a direct mapped data cache, f | ushda writes the data
cache line that is mapped to the specified address back to memory if the line is dirty, and then
clears the data cache line. Unlike f | ushd, f | ushda writes the dirty data back to memory
only when the addressed data is currently in the cache. This process comprises the following
steps:

m Compute the effective address specified by the sum of rA and the signed 16-bit immediate
value.

m |dentify the data cache line associated with the computed effective address. Each data cache
effective address comprises at ag field and al i ne field. When identifying the line,
f | ushda uses both the t ag field and the | i ne field.

m Compare the cache line tag with the effective address to determine if the addressed data is
currently cached. If the t ag fields do not match, the effective address is not currently
cached, so the instruction does nothing.

m If the data cache line is dirty and the t ag fields match, write the dirty cache line back to
memory. A cache line is dirty when one or more words of the cache line have been modified
by the processor, but are not yet written to memory.

m Clear the valid bit for the line.

If the Nios Il processor core does not have a data cache, the f | ushda instruction performs no
operation.

Use f | ushda to write dirty lines back to memory only if the addressed memory location is
currently in the cache, and then flush the cache line. By contrast, refer to “flushd flush data
cache line” on page 8-51, “initd initialize data cache line” on page 8-55, and “initda initialize
data cache address” on page 8-56 for other cache-clearing options.

For more information on the Nios |l data cache, refer to the Cache and Tightly Coupled Memory
chapter of the Nios Il Software Developer’s Handbook.

Supervisor-only data address
Fast TLB miss (data)

Double TLB miss (data)

MPU region violation (data)

A = Register index of operand rA
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0O

A

0 IMM16 Ox1b
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flushi

Operation:
Assembler Syntax:
Example:

Description:

Exceptions:

Instruction Type:

Instruction Fields:

flush instruction cache line

Flushes the instruction cache line associated with address rA.
flushi rA
flushi r6

Ignoring the tag, f | ushi identifies the instruction cache line associated with the byte address
in rA, and invalidates that line.

If the Nios Il processor core does not have an instruction cache, the f I ushi instruction
performs no operation.

For more information about the data cache, refer to the Cache and Tightly Coupled Memory
chapter of the Nios /I Software Developer’s Handbook.

None

R

A = Register index of operand rA

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0O

A

0 0 0x0c 0 Ox3a
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flushp flush pipeline

Operation: Flushes the processor pipeline of any prefetched instructions.

Assembler Syntax: flushp

Example: flushp

Description: Ensures that any instructions prefetched after the f I ushp instruction are removed from the
pipeline.

Usage: Use f | ushp before transferring control to newly updated instruction memory.

Exceptions: None

Instruction Type: R

Instruction Fields: None

31 30 29 28 27 2 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0x04 0 0x3a
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initd initialize data cache line
Operation: Initializes the data cache line associated with address rA + o (IMM16).

Assembler Syntax: initd | MML6(rA)

Example: initd O(r6)

Description: If the Nios Il processor implements a direct mapped data cache, i ni t d clears the data cache

line without checking for (or writing) a dirty data cache line that is mapped to the specified
address back to memory. Unlike i ni t da, i ni t d clears the cache line regardless of whether
the addressed data is currently cached. This process comprises the following steps:

m Compute the effective address specified by the sum of rA and the signed 16-bit immediate
value.

m |dentify the data cache line associated with the computed effective address. Each data cache
effective address comprises at ag field and al i ne field. When identifying the line, i ni t d
ignores the t ag field and only uses the I i ne field to select the data cache line to clear.

m Skip comparing the cache line tag with the effective address to determine if the addressed
data is currently cached. Because i ni t d ignores the cache line tag, i ni t d flushes the
cache line regardless of whether the specified data location is currently cached.

m Skip checking if the data cache line is dirty. Because i ni t d skips the dirty cache line check,
data that has been modified by the processor, but not yet written to memory is lost.

m Clear the valid bit for the line.

If the Nios Il processor core does not have a data cache, the i ni t d instruction performs no
operation.

Usage: Use i ni t d after processor reset and before accessing data memory to initialize the
processor’s data cache. Use i ni t d with caution because it does not write back dirty data. By
contrast, refer to “flushd flush data cache line” on page 8-51, “flushda flush data cache
address” on page 8-52, and “initda initialize data cache address” on page 8-56 for other
cache-clearing options. Altera recommends using i ni t d only when the processor comes out
of reset.

For more information on data cache, refer to the Cache and Tightly Coupled Memory chapter of
the Nios Il Software Developer’s Handbook.

Exceptions: Supervisor-only instruction
Instruction Type: |
Instruction Fields: A = Register index of operand rA

IMM16 = 16-bit signed immediate value

31 30 20 28 27 2 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 8 8 7 6 5 4 3 2 1 0
A 0 IMM16 0x33
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initda

Operation:

Assembler Syntax:

Example:

Description:

Usage:

Exceptions:

Instruction Type:

Instruction Fields:

initialize data cache address

Initializes the data cache line currently caching address rA + ¢ (IMM16)
initda | MML6(r A)
initda -100(r6)

If the Nios Il processor implements a direct mapped data cache, i ni t da clears the data cache
line without checking for (or writing) a dirty data cache line that is mapped to the specified
address back to memory. Unlike i ni t d, i ni t da clears the cache line only when the
addressed data is currently cached. This process comprises the following steps:

m Compute the effective address specified by the sum of rA and the signed 16-bit immediate
value.

m |dentify the data cache line associated with the computed effective address. Each data cache
effective address comprises at ag field and al i ne field. When identifying the line,
i ni t da uses both the t ag field and the I i ne field.

m Compare the cache line tag with the effective address to determine if the addressed data is
currently cached. If the t ag fields do not match, the effective address is not currently
cached, so the instruction does nothing.

m Skip checking if the data cache line is dirty. Because i ni t d skips the dirty cache line check,
data that has been modified by the processor, but not yet written to memory is lost.

m Clear the valid bit for the line.

If the Nios Il processor core does not have a data cache, the i ni t da instruction performs no
operation.

Use i ni t da to skip writing dirty lines back to memory and to flush the cache line only if the
addressed memory location is currently in the cache. By contrast, refer to “flushd flush data
cache line” on page 8-51, “flushda flush data cache address” on page 8-52, and “initd initialize
data cache line” on page 8-55 for other cache-clearing options. Use i ni t da with caution
because it does not write back dirty data.

For more information on the Nios |l data cache, refer to the Cache and Tightly Coupled Memory
chapter of the Nios Il Software Developer’s Handbook.

Supervisor-only data address
Fast TLB miss (data)

Double TLB miss (data)

MPU region violation (data)
Unimplemented instruction

A = Register index of operand rA
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A

0 IMM16 0x13
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initi initialize instruction cache line
Operation: Initializes the instruction cache line associated with address rA.

Assembler Syntax: initi rA

Example: initi r6

Description: Ignoring the tag, i ni ti identifies the instruction cache line associated with the byte address

inra,andi ni ti invalidates that line.

If the Nios Il processor core does not have an instruction cache, thei ni ti instruction
performs no operation.

Usage: This instruction is used to initialize the processor’s instruction cache. Immediately after
processor reset, use i ni ti to invalidate each line of the instruction cache.

For more information on instruction cache, refer to the Cache and Tightly Coupled Memory
chapter of the Nios Il Software Developer’s Handbook.

Exceptions: Supervisor-only instruction
Instruction Type: R
Instruction Fields: A = Register index of operand rA

31 30 29 28 27 2 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A 0 0 0x29 0 0x3a
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jmp computed jump
Operation: PC «rA

Assembler Syntax: jnp rA

Example: jmp ri2

Description: Transfers execution to the address contained in register rA.

Usage: It is illegal to jump to the address contained in register r31. To return from subroutines called

bycal | orcallr,useret instead of j np.

Exceptions: Misaligned destination address
Instruction Type: R
Instruction Fields: A = Register index of operand rA

31 30 29 28 27 2 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A 0 0 0x0d 0 0x3a
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jmpi jump immediate
Operation: PC < (PCsy.25 : IMM26 x 4)

Assembler Syntax: j mpi | abel

Example: jmpi write_char

Description: Transfers execution to the instruction at address (PCsq o5 : IMM26 x 4).

Usage: j npi is a low-overhead local jump. j npi can transfer execution anywhere within the 256-MB

range determined by PCs; 5. The Nios Il GNU linker does not automatically handle cases in
which the address is out of this range.

Exceptions: None
Instruction Type: J
Instruction Fields: IMM26 = 26-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 8 8 7 6 5 4 3 2 1 0
IMM26 0x01
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Idb / Idbio load byte from memory or I/0 peripheral
0peration: rB %G(Mem8[rA+ G(IMNHG)])
Assembler Syntax: ldb rB, byte_offset(rA)

I dbio rB, byte_offset(rA)
Example: I db r6, 100(r5)

Description: Computes the effective byte address specified by the sum of rA and the instruction's signed
16-bit immediate value. Loads register rB with the desired memory byte, sign extending the
8-bit value to 32 bits. In Nios Il processor cores with a data cache, this instruction may retrieve
the desired data from the cache instead of from memory.

Usage: Use the | dbi o instruction for peripheral I/0. In processors with a data cache, I dbi o
bypasses the cache and is guaranteed to generate an Avalon-MM data transfer. In processors
without a data cache, | dbi o acts like | db.

For more information on data cache, refer to the Cache and Tightly Coupled Memory chapter of
the Nios Il Software Developer’s Handbook.

Exceptions: Supervisor-only data address
Misaligned data address
TLB permission violation (read)
Fast TLB miss (data)
Double TLB miss (data)
MPU region violation (data)

Instruction Type: '

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A B IMM16 0x07
Instruction format for | db

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A B IMM16 0x27
Instruction format for | dbi o
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Idbu / Idbuio load unsigned byte from memory or 1/0 peripheral
0peration: rB <~ 0x000000 : |\/|em8[rA + O (IMNHG)]
Assembler Syntax: | dbu rB, byte_ offset(rA)
| dbuio rB, byte_offset(rA)
Examp'e: | dbu r 6, 100( r 5)
Description: Computes the effective byte address specified by the sum of rA and the instruction's signed

Usage:

Exceptions:

16-bit immediate value. Loads register rB with the desired memory byte, zero extending the
8-bit value to 32 bits.

In processors with a data cache, this instruction may retrieve the desired data from the cache
instead of from memory. Use the | dbui o instruction for peripheral 1/0. In processors with a
data cache, | dbui o bypasses the cache and is guaranteed to generate an Avalon-MM data
transfer. In processors without a data cache, | dbui o acts like | dbu.

For more information on data cache, refer to the Cache and Tightly Coupled Memory chapter of
the Nios Il Software Developer’s Handbook.

Supervisor-only data address

m Misaligned data address

TLB permission violation (read)
Fast TLB miss (data)

m Double TLB miss (data)

m MPU region violation (data)

Instruction Type: '

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A B IMM16 0x03
Instruction format for | dbu
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x23

Instruction format for | dbui o
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Idh / Idhio load halfword from memory or 1/0 peripheral
Operation: rB <~ (Mem16[rA + o (IMM16)])
I dhio rB, byte_offset(rA)

Description: Computes the effective byte address specified by the sum of rA and the instruction's signed
16-bit immediate value. Loads register rB with the memory halfword located at the effective byte
address, sign extending the 16-bit value to 32 bits. The effective byte address must be halfword
aligned. If the byte address is not a multiple of 2, the operation is undefined.

Usage: In processors with a data cache, this instruction may retrieve the desired data from the cache
instead of from memory. Use the | dhi o instruction for peripheral I/0. In processors with a
data cache, | dhi o bypasses the cache and is guaranteed to generate an Avalon-MM data
transfer. In processors without a data cache, | dhi o acts like | dh.

For more information on data cache, refer to the Cache and Tightly Coupled Memory chapter of
the Nios Il Software Developer’s Handbook.

Exceptions: m Supervisor-only data address
m Misaligned data address
m TLB permission violation (read)

m Fast TLB miss (data)
m Double TLB miss (data)
m MPU region violation (data)

Instruction Type:

Instruction Fields:

A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 6 5 4 3 2 1 0
A B IMM16 0xof
Instruction format for | dh
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 6 5 4 3 2 1 0
A B IMM16 Ox2f

Nios Il Processor Reference Handbook

Instruction format for | dhi o
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Idhu / Idhuio load unsigned halfword from memory or 1/0 peripheral
Operation: rB <—0x0000 : Mem16[rA + ¢ (IMM16)]

I dhui o rB, byte_offset(rA)
Description: Computes the effective byte address specified by the sum of rA and the instruction's signed

Usage:

16-bit immediate value. Loads register rB with the memory halfword located at the effective
byte address, zero extending the 16-bit value to 32 bits. The effective byte address must be
halfword aligned. If the byte address is not a multiple of 2, the operation is undefined.

In processors with a data cache, this instruction may retrieve the desired data from the cache
instead of from memory. Use the | dhui o instruction for peripheral 1/0. In processors with a
data cache, | dhui o bypasses the cache and is guaranteed to generate an Avalon-MM data
transfer. In processors without a data cache, | dhui o acts like | dhu.

For more information on data cache, refer to the Cache and Tightly Coupled Memory chapter of
the Nios Il Software Developer’s Handbook.

Exceptions: Supervisor-only data address

Misaligned data address

TLB permission violation (read)
Fast TLB miss (data)

Double TLB miss (data)

MPU region violation (data)

Instruction Type: |

Instruction Fields: A = Register index of operand rA

31

30

B = Register index of operand rB
IMM16 = 16-bit signed immediate value

29 28 27 2 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A B IMM16 0x0b

31

30

Instruction format for | dhu

29 28 27 2 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0O

A B IMM16 0x2b

Instruction format for | dhui o
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Idw / Idwio load 32-bit word from memory or 1/0 peripheral
0peration: rB <—|V|em32[l’A +0 (lMM14)]
Assembler SVHtax: | dw r B, byt e_Of fset ( r A)
ldwi o rB, byte_ offset(rA)
Examp'e: | dw r6, 100( r 5)
Description: Computes the effective byte address specified by the sum of rA and the instruction's signed

16-bit immediate value. Loads register rB with the memory word located at the effective byte
address. The effective byte address must be word aligned. If the byte address is not a multiple
of 4, the operation is undefined.

Usage: In processors with a data cache, this instruction may retrieve the desired data from the cache
instead of from memory. Use the | dwi o instruction for peripheral 1/0. In processors with a
data cache, | dwi o bypasses the cache and memory. Use the | dwi o instruction for peripheral
I/0. In processors with a data cache, | dwi o bypasses the cache and is guaranteed to generate
an Avalon-MM data transfer. In processors without a data cache, | dwi o acts like | dw.

For more information on data cache, refer to the Cache and Tightly Coupled Memory chapter of
the Nios Il Software Developer’s Handbook.

Exceptions: Supervisor-only data address
Misaligned data address
TLB permission violation (read)
Fast TLB miss (data)
Double TLB miss (data)
MPU region violation (data)

Instruction Type: '

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A B IMM16 0x17
Instruction format for | dw

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A B IMM16 0x37
Instruction format for | dwi o
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mov move register to register
Operation: rC «<rA

Assembler Syntax: mv rC, rA

Example: nmv r6, r7

Description: Moves the contents of rA to rC.

Pseudo-instruction: mov is implemented asadd rC, rA, rO.

© July 2010 Altera Corporation Nios Il Processor Reference Handbook
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movhi move immediate into high halfword
Operation: rB « (IMMED : 0x0000)

Assembler Syntax:
Example:

Description:

Usage:

Pseudo-instruction:

movhi rB, | MVED
movhi r6, 0x8000

Writes the immediate value IMMED into the high halfword of rB, and clears the lower halfword
of rB to 0x0000.

The maximum allowed value of IMMED is 65535. The minimum allowed value is 0. To load a
32-bit constant into a register, first load the upper 16 bits using a rovhi pseudo-instruction.
The %hi () macro can be used to extract the upper 16 bits of a constant or a label. Then, load
the lower 16 bits with an or i instruction. The %I o() macro can be used to extract the lower
16 bits of a constant or label as shown below.

movhi rB, %i (val ue)
ori rB, rB, 9% o(val ue)

An alternative method to load a 32-bit constant into a register uses the %hiadj() macro and the
addi instruction as shown below.

movhi rB, %i adj (val ue)
addi rB, rB, % o(val ue)

novhi isimplementedasorhi rB, r0, |MVED.
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movi

Operation:
Assembler Syntax:
Example:

Description:

Usage:

Pseudo-instruction:

© July 2010 Altera Corporation

move signed immediate into word

rB <o (IMMED)
movi rB, | MVED
movi r6, -30

Sign-extends the immediate value IMMED to 32 bits and writes it to rB.

The maximum allowed value of IMMED is 32767. The minimum allowed value is
-32768. To load a 32-bit constant into a register, refer to the movhi instruction.

novi isimplementedasaddi rB, r0, | MVED.

Nios Il Processor Reference Handbook
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Instruction Set Reference

movia move immediate address into word
Operation: rB < label

Assembler Syntax:
Example:

Description:

Pseudo-instruction:

movi a rB, | abel
novia r6, function_address
Writes the address of label to rB.

novi a is implemented as:
orhi rB, r0, %i adj (Il abel)
addi rB, rB, % o(l abel)

Nios Il Processor Reference Handbook
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Instruction Set Reference

movui

Operation:
Assembler Syntax:
Example:

Description:

Usage:

Pseudo-instruction:

© July 2010 Altera Corporation

move unsigned immediate into word

rB < (0x0000 : IMMED)
movui rB, | MVED
movui r6, 100

Zero-extends the immediate value IMMED to 32 bits and writes it to rB.

The maximum allowed value of IMMED is 65535. The minimum allowed value is 0. To load a
32-bit constant into a register, refer to the novhi instruction.

movui isimplementedasori rB, r0, | MVED.
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Operation:
Assembler Syntax:
Example:

Description:

Usage:

Exceptions:

Instruction Type:

Instruction Fields:

multiply

I’C &(rA X rB) 31.0
mul rC, rA rB
mul r6, r7, r8

Multiplies rA times rB and stores the 32 low-order bits of the product to rC. The result is the
same whether the operands are treated as signed or unsigned integers.

Nios Il processors that do not implement the nul instruction cause an unimplemented
instruction exception.

Carry Detection (unsigned operands):

Before or after the multiply operation, the carry out of the MSB of rC can be detected using the
following instruction sequence:

mul rC, rA rB ; The nul operation (optional)
mul xuu rD, rA, rB ; rDis nonzero if carry occurred
cnpne rD, rD, r0 ; rDis 1 if carry occurred, 0 if not

The mul xuu instruction writes a nonzero value into rD if the multiplication of unsigned
numbers generates a carry (unsigned overflow). If a 0/1 result is desired, follow the mul xuu
with the crrpne instruction.

Overflow Detection (signed operands):

After the multiply operation, overflow can be detected using the following instruction sequence:

mul rC, rA rB ; The original nul operation
cnplt rD, rC, r0

mul xss rE, rA, rB

add rD, rD, rE ; rDis nonzero if overflow
cnpne rD, rD, r0 ; rDis 1 if overflow, O if not

The cnpl t —mul xss—add instruction sequence writes a nonzero value into rD if the product
in rC cannot be represented in 32 bits (signed overflow). If a 0/1 result is desired, follow the
instruction sequence with the cnpne instruction.

Unimplemented instruction

R

A = Register index of operand rA
B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0O

A

B C 0x27 0 0x3a
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muli multiply immediate
Operation: 1B < (rA x o(IMM16)) 3.0

Assembler Syntax: nuli rB, rA | M6

Example: muli r6, r7, -100

Description: Sign-extends the 16-bit immediate value IMM16 to 32 bits and multiplies it by the value of rA.

Stores the 32 low-order bits of the product to rB. The result is independent of whether rA is
treated as a signed or unsigned number.

Nios Il processors that do not implement the mul i instruction cause an unimplemented
instruction exception.

Carry Detection and Overflow Detection:
For a discussion of carry and overflow detection, refer to the nul instruction.

Exceptions: Unimplemented instruction

Instruction Type: |

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

31 30 20 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 8 8 7 6 5 4 3 2 1 0
A B IMM16 0x24

© July 2010 Altera Corporation Nios Il Processor Reference Handbook



8-72 Chapter 8: Instruction Set Reference
Instruction Set Reference

mulxss multiply extended signed/signed
Operation: rC «((signed) rA) x ((signed) rB)) ¢332

Assembler Syntax: nmul xss rC, rA rB

Example: nmul xss r6, r7, r8

Description: Treating rA and rB as signed integers, mul xss multiplies rA times rB, and stores the 32

high-order bits of the product to rC.

Nios Il processors that do not implement the mul xss instruction cause an unimplemented
instruction exception.

Usage: Use mul xss and mul to compute the full 64-bit product of two 32-bit signed integers.
Furthermore, mul xss can be used as part of the calculation of a 128-bit product of two 64-bit
signed integers. Given two 64-bit integers, each contained in a pair of 32-bit registers,
(S1:U1)and (S2 : U2), their 128-bit product is (U1 x U2) + ((S1 x U2) << 32) + ((U1 x S2) <<
32) + ((S1 x S2) << 64). The mul xss and mul instructions are used to calculate the 64-bit
product S1 x S2.

Exceptions: Unimplemented instruction
Instruction Type: R
Instruction Fields: A = Register index of operand rA

B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0O
A B C Ox1f 0 Ox3a
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mulxsu multiply extended signed/unsigned
Operation: rC < ((signed) rA) x ((unsigned) rB)) 3 32

Assembler Syntax: mul xsu rC, rA rB

Example: mul xsu r6, r7, r8

Description: Treating rA as a signed integer and rB as an unsigned integer, mul xsu multiplies rA times rB,

and stores the 32 high-order bits of the product to rC.

Nios Il processors that do not implement the mul xsu instruction cause an unimplemented
instruction exception.

mul xsu can be used as part of the calculation of a 128-bit product of two 64-bit signed

Usage:
integers. Given two 64-bit integers, each contained in a pair of 32-bit registers, (S1: U1) and
(52 : U2), their 128-bit product is: (U1 x U2) + ((S1 x U2) << 32) + ((U1 x S2) << 32) + ((S1
x S2) << 64). The mul xsu and rmmul instructions are used to calculate the two 64-bit products
S1x U2and U1 x S2.

Exceptions: Unimplemented instruction

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0O
A B C 0x17 0 Ox3a
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mulxuu multiply extended unsigned/unsigned
Operation: rC < ((unsigned) rA) x ((unsigned) rB)) g3.3,

Assembler Syntax:
Example:

Description:

Usage:

Exceptions:

Instruction Type:

Instruction Fields:

mul xuu rC, rA, rB
mul xuu r6, r7, r8

Treating rA and rB as unsigned integers, mul xuu multiplies rA times rB and stores the 32
high-order bits of the product to rC.

Nios Il processors that do not implement the mul xuu instruction cause an unimplemented
instruction exception.

Use mul xuu and mul to compute the 64-bit product of two 32-bit unsigned integers.
Furthermore, mul xuu can be used as part of the calculation of a 128-bit product of two 64-bit
signed integers. Given two 64-bit signed integers, each contained in a pair of 32-bit registers,
(S1:U1) and (S2: U2), their 128-bit product is (U1 x U2) + ((S1 x U2) << 32) + ((U1 x S2) <<
32) + ((S1 x S2) << 64). The mul xuu and nul instructions are used to calculate the 64-bit
product U1 x U2.

nmul xuu also can be used as part of the calculation of a 128-bit product of two 64-bit unsigned
integers. Given two 64-bit unsigned integers, each contained in a pair of 32-bit registers, (T1:
U1) and (T2 : U2), their 128-bit product is (U1 x U2) + (U1 x T2) << 32) + ((T1 x U2) << 32)
+ ((T1 x T2) << 64). The mul xuu and mul instructions are used to calculate the four 64-bit
products U1 x U2, U1 x T2, T1 x U2, and T1 x T2.

Unimplemented instruction

R

A = Register index of operand rA
B = Register index of operand rB
G = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A

B C 0x07 0 0x3a
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nextpc get address of following instruction
Operation: rC«PC +4

Assembler Syntax: nextpc rC

Example: nextpc r6

Description: Stores the address of the next instruction to register rC.

Usage: A relocatable code fragment can use next pc to calculate the address of its data segment.

next pc is the only way to access the PC directly.

Exceptions: None
Instruction Type: R
Instruction Fields: C = Register index of operand rC

31 30 29 28 27 2 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 C Ox1c 0 0x3a
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nop no operation
Operation: None

Assembler Syntax: nop

Example: nop

Description: nop does nothing.

Pseudo-instruction: nop is implemented as add r0, rO, rO.
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nor bitwise logical nor
Operation: rC <~(rA| B)

Assembler Syntax: nor rC, rA B

Example: nor r6, r7, r8

Description: Calculates the bitwise logical NOR of rA and rB and stores the result in rC.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 8 8 7 6 5 4 3 2 1 0
A B C 0x06 0 0x3a
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or bitwise logical or

Operation: rC<rA|rB

Assembler Syntax: or rC rA rB

Example: or r6, r7, r8

Description: Calculates the bitwise logical OR of rA and rB and stores the result in rC.

Exceptions: None

R

Instruction Type:

Instruction Fields:

A = Register index of operand rA
B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0O

A

B C 0x16 0 0x3a
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orhi bhitwise logical or immediate into high halfword
Operation: rB < rA| (IMM16 : 0x0000)

Assembler Syntax: orhi rB, rA [MVL6

Example: orhi r6, r7, 100

Description: Calculates the bitwise logical OR of rA and (IMM16 : 0x0000) and stores the result in rB.
Exceptions: None

Instruction Type: '

Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 8 8 7 6 5 4 3 2 1 0
A B IMM16 0x34
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ori bitwise logical or immediate
Operation: rB <—rA | (0x0000 : IMM16)

Assembler Syntax: ori rB, rA |1ML6

Example: ori r6, r7, 100

Description: Calculates the bitwise logical OR of rA and (0x0000 : IMM16) and stores the result in rB.
Exceptions: None

Instruction Type: '
Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 8 8 7 6 5 4 3 2 1 0
A B IMM16 0x14
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rdctl read from control register
Operation: rC <—ctIN
Assembler Syntax: rdctl rC ctIN
Example: rdctl r3, ctl31
Description: Reads the value contained in control register ctIN and writes it to register rC.
Exceptions: Supervisor-only instruction
Instruction Type: R
Instruction Fields: C = Register index of operand rC

N = Control register index of operand ctIN

31 30 20 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 8 8 7 6 5 4 3 2 1 0O
0 0 C 0x26 N 0x3a
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rdprs

Operation:
Assembler Syntax:
Example:

Description:

Usage:

Exceptions:

Instruction Type:

Instruction Fields:

read from previous register set

rB < prs.rA + o (IMM16)
rdprs rB, rA | MVL6
rdprs r6, r7, 0O

Sign-extends the 16-bit immediate value IMM16 to 32 bits, and adds it to the value of rA from
the previous register set. Places the result in rB in the current register set.

The previous register set is specified by st at us. PRS. By default, st at us. PRS indicates
the register set in use before an exception, such as an external interrupt, caused a register set
change.

To read from an arbitrary register set, software can insert the desired register set number in
st at us. PRS prior to executing r dpr s.

If shadow register sets are not implemented on the Nios Il core, r dpr s is an illegal
instruction.

Supervisor-only instruction
lllegal instruction

A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A

B IMM16 0x38
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ret return from subroutine
Operation: PC<«ra
Assemhler Syntax: ret
Example: ret
Description: Transfers execution to the address inr a.
Usage: Any subroutine called by cal I orcal | r must user et to return.
Exceptions: Misaligned destination address
Instruction Type: R
Instruction Fields: None

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 8 8 7 6 5 4 3 2 1 0
0x1f 0 0 0x05 0 0x3a

© July 2010 Altera Corporation Nios Il Processor Reference Handbook



8-84

Chapter 8: Instruction Set Reference
Instruction Set Reference

rol

Operation:
Assembler Syntax:
Example:

Description:

Exceptions:

Instruction Type:

Instruction Fields:

31 30 29 28 27 26 25

rotate left

rC < rA rotated left rB, q bit positions
rol rC, rA B
rol r6, r7, r8

Rotates rA left by the number of bits specified in rB4 gand stores the result in rC. The bits that
shift out of the register rotate into the least-significant bit positions. Bits 31-5 of rB are
ignored.

None

R

A = Register index of operand rA
B = Register index of operand rB
C = Register index of operand rC

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 S5 4 3 2 1 0O

A

B C 0x03 0 0x3a
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roli

Operation:
Assembler Syntax:
Example:

Description:

Usage:

Exceptions:

Instruction Type:

Instruction Fields:

31 30 29 28 27 26 25

rotate left immediate

rC < rA rotated left IMMS5 bit positions
roli rC, rA | Mb
roli r6, r7, 3

Rotates rA left by the number of bits specified in IMMS and stores the result in rC. The bits that
shift out of the register rotate into the least-significant bit positions.

In addition to the rotate-left operation, r ol i can be used to implement a rotate-right operation.
Rotating left by (32 — IMMD5) bits is the equivalent of rotating right by IMM5 bits.

None

R

A = Register index of operand rA
C = Register index of operand rC
IMM5 = 5-bit unsigned immediate value

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 S5 4 3 2 1 0O

A

0 C 0x02 IMM5 0x3a

© July 2010 Altera Corporation
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ror rotate right
Operation: rC «<—rA rotated right rB, o bit positions

Assembler Syntax:

Example:

Description:

Exceptions:

Instruction Type:

Instruction Fields:

31 30 29 28 27 26 25

ror rC, rA B
ror r6, r7, r8

Rotates rA right by the number of bits specified in rB, o and stores the result in rC. The bits that
shift out of the register rotate into the most-significant bit positions. Bits 31— 5 of rB are
ignored.

None

R

A = Register index of operand rA
B = Register index of operand rB
C = Register index of operand rC

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 S5 4 3 2 1 0O

A

B C 0x0b 0 0x3a

Nios Il Processor Reference Handbook © July 2010 Altera Corporation



Chapter 8: Instruction Set Reference

Instruction Set Reference

8-87

Operation:
Assembler Syntax:
Example:

Description:

Exceptions:

Instruction Type:

Instruction Fields:

31 30 29 28 27 26 25 24 23 22 21

rC <—rA << (rB4_g)

sl |

sl |

rC, rA rB
re, r7, r8

shift left logical

Shifts rA left by the number of bits specified in rB,4_q (inserting zeroes), and then stores the
result in rC. sl | performs the << operation of the C programming language.

None

R

A:
B:
C=

Register index of operand rA
Register index of operand rB
Register index of operand rC

20 19 18 17 16 15 14 13 12 11 10

9 8 7 6 5 4 3 2 1 0

A

B

C

0x13

© July 2010 Altera Corporation
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slli shift left logical immediate
Operation: rC < rA << IMM5
Assembler Syntax: slli rC, rA 1 Mb
Example: slli r6, r7, 3
Description: Shifts rA left by the number of bits specified in IMMS (inserting zeroes), and then stores the
result in rC.
Usage: sl 1'i performs the << operation of the C programming language.
Exceptions: None
Instruction Type: R
Instruction Fields: A = Register index of operand rA

C = Register index of operand rC
IMMS5 = 5-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A 0 C 0x12 IMM5 0x3a
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sra shift right arithmetic

Operation: rC < (signed) rA >> ((unsigned) rB, o)

Assembler Syntax: srarC rA rB

Example: srar6, r7, r8

Description: Shifts rA right by the number of bits specified in rBy o (duplicating the sign bit), and then stores
the result in rC. Bits 31-5 are ignored.

Usage: sr a performs the signed >> operation of the C programming language.

Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A B C 0x3b 0 0x3a
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srai shift right arithmetic immediate
Operation: rC < (signed) rA >> ((unsigned) IMM5)
Assembler Syntax: srai rC, rA | MW
Example: srai r6, r7, 3
Description: Shifts rA right by the number of bits specified in IMM5 (duplicating the sign bit), and then

stores the result in rC.

Usage: srai performs the signed >> operation of the C programming language.
Exceptions: None

Instruction Type: R

Instruction Fields: A = Register index of operand rA

C = Register index of operand rC
IMMS5 = 5-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A 0 C 0x3a IMM5 0x3a
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Instruction Set Reference

srl

Operation:
Assembler Syntax:
Example:

Description:

Usage:

Exceptions:

Instruction Type:

Instruction Fields:

shift right logical

rC < (unsigned) rA >> ((unsigned) rB, o)
srl rC, rA rB
srl r6, r7, r8

Shifts rA right by the number of bits specified in rB,_q (inserting zeroes), and then stores the
result in rC. Bits 31-5 are ignored.

sr| performs the unsigned >> operation of the C programming language.

None

R

A = Register index of operand rA
B = Register index of operand rB
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0O

A

B C 0x1b 0 0x3a
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stli shift right logical immediate
Operation: rC < (unsigned) rA >> ((unsigned) IMM5)
Assembler Syntax: srli rC, rA |IMb
Example: srli r6, r7, 3
Description: Shifts rA right by the number of bits specified in IMM5 (inserting zeroes), and then stores the
result in rC.
Usage: srli performs the unsigned >> operation of the C programming language.
Exceptions: None
Instruction Type: R
Instruction Fields: A = Register index of operand rA

C = Register index of operand rC
IMMS5 = 5-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A 0 C Ox1a IMM5 0x3a
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sth / sthio

Operation:

Assembler Syntax:

Example:

Description:

Usage:

Exceptions:

Instruction Type:

Instruction Fields:

31 30 29 28 27 26 25

store byte to memory or 1/0 peripheral

Mem8][rA + ¢ (IMM16)] < rB; o

stb rB, byte_offset(rA)

stbio rB, byte_offset(rA)

stb r6, 100(r5)

Computes the effective byte address specified by the sum of rA and the instruction's signed

16-bit immediate value. Stores the low byte of rB to the memory byte specified by the effective
address.

In processors with a data cache, this instruction may not generate an Avalon-MM bus cycle to
noncache data memory immediately. Use the st bi o instruction for peripheral 1/0. In
processors with a data cache, st bi o bypasses the cache and is guaranteed to generate an
Avalon-MM data transfer. In processors without a data cache, st bi o acts like st b.

Supervisor-only data address
Misaligned data address

TLB permission violation (write)
Fast TLB miss (data)

Double TLB miss (data)

MPU region violation (data)

A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A

B IMM16 0x05

31 30 29 28 27 26 25

Instruction format for st b

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0O

A

B IMM16 0x25

© July 2010 Altera Corporation
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sth / sthio

Operation:

Assembler Syntax:

Example:

Description:

Usage:

Exceptions:

Instruction Type:

Instruction Fields:

store halfword to memory or 1/0 peripheral

Mem16[rA + ¢ (IMM16)] < rBy5 o

sth rB, byte_offset(rA)

sthio rB, byte_offset(rA)

sth r6, 100(r5)

Computes the effective byte address specified by the sum of rA and the instruction's signed
16-bit immediate value. Stores the low halfword of rB to the memory location specified by the

effective byte address. The effective byte address must be halfword aligned. If the byte address
is not a multiple of 2, the operation is undefined.

In processors with a data cache, this instruction may not generate an Avalon-MM data transfer
immediately. Use the sthio instruction for peripheral I/0. In processors with a data cache,

st hi o bypasses the cache and is guaranteed to generate an Avalon-MM data transfer. In
processors without a data cache, st hi o acts like st h.

Supervisor-only data address
Misaligned data address

TLB permission violation (write)
Fast TLB miss (data)

Double TLB miss (data)

MPU region violation (data)

A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A B IMM16 0x0d
Instruction format for st h
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

B IMM16 0x2d

Nios Il Processor Reference Handbook
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stw / stwio

Operation:

Assembler Syntax:

Example:

Description:

Usage:

Exceptions:

Instruction Type:

Instruction Fields:

31 30 29 28 27 26 25

store word to memory or 1/0 peripheral

Mem32[rA + ¢ (IMM16)] < rB

stw rB, byte_offset(rA)

stwio rB, byte offset(rA)

stw r6, 100(r5)

Computes the effective byte address specified by the sum of rA and the instruction's signed
16-bit immediate value. Stores rB to the memory location specified by the effective byte

address. The effective byte address must be word aligned. If the byte address is not a multiple
of 4, the operation is undefined.

In processors with a data cache, this instruction may not generate an Avalon-MM data transfer
immediately. Use the st wi o instruction for peripheral 1/0. In processors with a data cache,
st wi o bypasses the cache and is guaranteed to generate an Avalon-MM bus cycle. In
processors without a data cache, st wi o acts like st w.

Supervisor-only data address
Misaligned data address

TLB permission violation (write)
Fast TLB miss (data)

Double TLB miss (data)

MPU region violation (data)

A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit signed immediate value

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0O

A

B IMM16 0x15

31 30 29 28 27 26 25

Instruction format for st w

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0O

A

B IMM16 0x35

© July 2010 Altera Corporation
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sub subtract
Operation: rC < rA-rB

Assembler Syntax:
Example:

Description:

Usage:

Exceptions:

Instruction Type:

Instruction Fields:

sub rC, rA rB

sub r6, r7, r8

Subtract rB from rA and store the result in rC.

Carry Detection (unsigned operands):

The carry bit indicates an unsign

ed overflow. Before or after a sub operation, a carry out of

the MSB can be detected by checking whether the first operand is less than the second

operand. The carry bit can be wri

tten to a register, or a conditional branch can be taken based

on the carry condition. Both cases are shown below.

sub rC, rA rB :
cnpltu rD, rA rB ;
sub rC, rA rB ;
bltu rA rB, |abel :

Overflow Detection (signed ope

Detect overflow of signed subtra

The original sub operation (optional)
rDis witten with the carry bit

The original sub operation (optional)
Branch if carry generated

rands):

ction by comparing the sign of the difference that is written

to rC with the signs of the operands. If rA and rB have different signs, and the sign of rC is
different than the sign of rA, an overflow occurred. The overflow condition can control a
conditional branch, as shown below.

sub rC, rA B ;
xor rD, rA rB :
xor rE, rA rC ;
and rD, rD, rE ;
blt rD, r0, |abel :

None

R

A = Register index of operand rA
B = Register index of operand rB
G = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

The original sub operation
Conpare signs of rA and rB
Conpare signs of rA and rC
Conmbi ne conpari sons

Branch if overfl ow occurred

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A

B C

0x39 0 Ox3a

Nios Il Processor Reference Handbook
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Operation:
Assembler Syntax:
Example:

Description:

Usage:

Pseudo-instruction:

© July 2010 Altera Corporation

subtract immediate

rB < rA - ¢ (IMMED)
subi rB, rA, | MVED
subi r8, r8, 4

Sign-extends the immediate value IMMED to 32 bits, subtracts it from the value of rA and then
stores the result in rB.

The maximum allowed value of IMMED is 32768. The minimum allowed value is
-32767.

subi isimplemented asaddi rB, rA, -1 MVED

Nios Il Processor Reference Handbook
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sync memory synchronization
Operation: None

Assembler Syntax: sync

Example: sync

Description: Forces all pending memory accesses to complete before allowing execution of subsequent

instructions. In processor cores that support in-order memory accesses only, this instruction
performs no operation.

Exceptions: None
Instruction Type: R
Instruction Fields: None

31 30 20 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 138 12 11 10 8 8 7 6 5 4 3 2 1 0
0 0 0 0x36 0 0x3a
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trap

Operation:

Assembler Syntax:

Example:

Description:

Usage:

Exceptions:

Instruction Type:

Instruction Fields:

31 30 29 28 27 26 25

trap

est at us <-st at us
PIE<0

U«o0

ea<PC+4

PC < exception handler address
trap

trap i mb

trap

Saves the address of the next instruction in register ea, saves the contents of the st at us
register in est at us, disables interrupts, and transfers execution to the exception handler.
The address of the exception handler is specified at system generation time.

The 5-bit immediate field i nmb is ignored by the processor, but it can be used by the
debugger.

t r ap with no argument is the same as t r ap O.

To return from the exception handler, execute an er et instruction.

Trap

R
IMM5 = Type of breakpoint

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 S5 4 3 2 1 0O

0

0 Ox1d 0x2d

© July 2010 Altera Corporation
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wretl write to control register
Operation: ctIN «rA

Assembler Syntax: wetl ctIN rA

Example: wctl ctl6, r3

Description: Writes the value contained in register rA to the control register ctIN.

Exceptions: Supervisor-only instruction

Instruction Type: R

Instruction Fields: A = Register index of operand rA

N = Control register index of operand ctIN

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0O
A 0 0 0x2e N Ox3a
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wrprs

Operation:
Assembler Syntax:
Example:

Description:

Usage:

Exceptions:

Instruction Type:

Instruction Fields:

write to previous register set

prs.rC < rA
wprs rC, rA
wprs r6, r7

Copies the value of rA in the current register set to rC in the previous register set. This
instruction can set r0 to 0 in a shadow register set.

The previous register set is specified by st at us. PRS. By default, st at us. PRS indicates
the register set in use before an exception, such as an external interrupt, caused a register set
change.

To write to an arbitrary register set, software can insert the desired register set number in
st at us. PRS prior to executing wr pr s.

System software must use wr pr s to initialize r O to 0 in each shadow register set before using
that register set.

If shadow register sets are not implemented on the Nios Il core, wr pr s is an illegal
instruction.

Supervisor-only instruction
lllegal instruction
R

A = Register index of operand rA
C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A 0x0 C 0x14 0 0x3a

© July 2010 Altera Corporation
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Xor bitwise logical exclusive or
Operation: rC«rA"rB
Assembler Syntax: xor rC, rA rB
Example: xor r6, r7, r8
Description: Calculates the bitwise logical exclusive-or of rA and rB and stores the result in rC.
Exceptions: None
Instruction Type: R

A = Register index of operand rA
B = Register index of operand rB
C = Register index of operand rC

Instruction Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 8 8 7 6 5 4 3 2 1 0
A B C Ox1e 0 0x3a
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xorhi bitwise logical exclusive or immediate into high halfword

Operation: rB <—rA * (IMM16 : 0x0000)

Assembler Syntax: xorhi rB, rA, |MIL6

Example: xorhi r6, r7, 100

Description: Calculates the bitwise logical exclusive XOR of rA and (IMM16 : 0x0000) and stores the result
in rB.

Exceptions: None

Instruction Type: '
Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit unsigned immediate value

31 30 20 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 8 8 7 6 5 4 3 2 1 0O
A B IMM16 0x3c
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xori bitwise logical exclusive or inmediate
Operation: rB <—rA * (0x0000 : IMM16)
Assembler Syntax: xori rB, rA 1ML6
Example: xori r6, r7, 100
Description: Calculates the bitwise logical exclusive OR of rA and (0x0000 : IMM16) and stores the result in
rB.
Exceptions: None

Instruction Type: '
Instruction Fields: A = Register index of operand rA
B = Register index of operand rB
IMM16 = 16-bit unsigned immediate value

31 30 20 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 8 8 7 6 5 4 3 2 1 0O
A B IMM16 Ox1c
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Referenced Documents

This chapter references the following documents:

m  Programming Model chapter of the Nios II Processor Reference Handbook

m  Application Binary Interface chapter of the Nios II Processor Reference Handbook

m  Cache and Tightly Coupled Memory chapter of the Nios II Software Developer’s

Handbook

Document Revision History

Table 8-6 shows the revision history for this document.

Table 8-6. Document Revision History (Part 1 of 2)

Date & Document
Version Changes Made Summary of Changes
July 2010 Correct typographical error in cnpgei instruction type. —
v10.0.0
November 2009 rdprs and wr pr s instructions. Added shadow register sets
v.91.0 and external interrupt
controller support
March 2009 Backwards-compatible change to the er et instruction B field —
v9.0.0 encoding.
November 2008 Maintenance release. —
v8.1.0
May 2008 Added an Exceptions section to all instructions. Added MMU.
v8.0.0
October 2007 Added j npi instruction. —
v7.2.0
May 2007 m Added table of contents to Introduction section. —
v7.1.0 m Added Referenced Documents section.
March 2007 Maintenance release. —
v7.0.0
November 2006 Maintenance release. —
v6.1.0
May 2006 Maintenance release. —
v6.0.0
October 2005 m Correction to the bl t instruction. —
v5.1.0 m Added U bit operation for br eak and t r ap instructions.
July 2005 m Added new f | ushda instruction. —
v5.0.1 m Updated f | ushd instruction.
m Instruction Opcode table updated with f | ushda instruction.
May 2005 Maintenance release. —
v5.0.0
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Table 8-6. Document Revision History (Part 2 of 2)

Date & Document
Version Changes Made Summary of Changes
December 2004 m br eak instruction update. —
v1.2 m srli instruction correction.
September 2004 Updates for Nios 1l 1.01 release. —
vl
May 2004 Initial release. —
v1.0
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A Additional Information

How to Find Further Information

This handbook is one part of the complete Nios II processor documentation. The
following references are also available.

The Nios 1I Software Developer’s Handbook describes the software development
environment, and discusses application programming for the Nios II processor.

The Embedded Peripherals IP User Guide discusses Altera-provided peripherals and
Nios II drivers which are included with the Quartus II software.

The Nios Il integrated development environment (IDE) provides tutorials and
complete reference for using the features of the graphical user interface. The help
system is available after launching the Nios II IDE.

Altera’s online solutions database is an internet resource that offers solutions to
frequently asked questions via an easy-to-use search engine. You can access the
database from the Knowledge Database page of the Altera website.

Altera application notes and tutorials offer step-by-step instructions on using the
Nios II processor for a specific application or purpose. You can obtain these
documents from the Literature: Nios II Processor page on the Altera website.

How to Contact Altera

For the most up-to-date information about Altera products, refer to the following

table.
Contact
Contact (Note 1) Method Address
Technical support Website www.altera.com/support
Technical training Website www.altera.com/training
Email custrain@altera.com
Altera literature services Email literature@altera.com
Non-technical support (General) Email nacomp@altera.com
(Software Licensing) Email authorization@altera.com
Note:

(1) You can also contact your local Altera sales office or sales representative.

© July 2010  Altera Corporation
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Typographic Conventions

Typographic Conventions

The following table shows the typographic conventions that this document uses.

Visual Cue

Bold Type with Initial Capital
Letters

Indicates command names, dialog box titles, dialog box options, and other GUI
labels. For example, Save As dialog box.

bold type

Indicates directory names, project names, disk drive names, file names, file name
extensions, and software utility names. For example, \qdesigns directory, d: drive,
and chiptrip.gdf file.

Italic Type with Initial Capital Letters

Indicates document titles. For example, AN 519: Stratix IV Design Guidelines.

Italic type

Indicates variables. For example, n+ 1.

Variable names are enclosed in angle brackets (< >). For example, <file name> and
<project name>.pof file.

Initial Capital Letters

Indicates keyboard keys and menu names. For example, Delete key and Options
menu.

“Subheading Title”

Quotation marks indicate references to sections within a document and titles of
Quartus Il Help topics. For example, “Typographic Conventions”.

Courier type

Indicates signal, port, register, bit, block, and primitive names. For example, dat a1,
t di,andi nput . Active-low signals are denoted by suffix n. For example,
resetn.

Indicates command line commands and anything that must be typed exactly as it
appears. For example, c: \ gdesi gns\tutorial \chiptrip. gdf.

Also indicates sections of an actual file, such as a Quartus Il report file, references to
parts of files (for example, the AHDL keyword SUBDESI GN), and logic function
names (for example, TRI ).

1.,2.,3.,and Numbered steps indicate a list of items when the sequence of the items is important,
a., b, c. and soon. such as the steps listed in a procedure.
EE Bullets indicate a list of items when the sequence of the items is not important.
1= The hand points to information that requires special attention.

A caution calls attention to a condition or possible situation that can damage or
ZauTioN destroy the product or your work.

A warning calls attention to a condition or possible situation that can cause you
WARNING injury.
« The angled arrow instructs you to press the Enter key.
e The feet direct you to more information about a particular topic.

Nios Il Processor Reference Handbook
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