
101 Innovation Drive
San Jose, CA 95134
www.altera.com

UG-VIPSUITE-10.0

User Guide

Video and Image Processing Suite

Document last updated for Altera Complete Design Suite version:
Document publication date:

10.0
July 2010

Subscribe

Video and Image Processing Suite User Guide

http://www.altera.com
https://www.altera.com/servlets/subscriptions/alert?id=UG-VIPSUITE

Video and Image Processing Suite User Guide July 2010 Altera Corporation

Copyright © 2010 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, and specific device designations
are trademarks and/or service marks of Altera Corporation in the U.S. and other countries. All other words and logos identified as trademarks and/or service marks
are the property of Altera Corporation or their respective owners. Altera products are protected under numerous U.S. and foreign patents and pending applications,
maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard
warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of
the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to
obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

July 2010 Altera Corporation
Contents
Chapter 1. About This MegaCore Function Suite
New Features . 1–1
Release Information . 1–2
Device Family Support . 1–2
Features . 1–3
General Description . 1–3

Color Space Converter (CSC) . 1–4
Chroma Resampler . 1–4
Gamma Corrector . 1–4
2D FIR Filter . 1–4
2D Median Filter . 1–4
Alpha Blending Mixer . 1–4
Scaler . 1–5
Clipper . 1–5
Deinterlacer . 1–5
Interlacer . 1–5
Frame Reader . 1–5
Frame Buffer . 1–5
Clocked Video Input . 1–5
Clocked Video Output . 1–6
Color Plane Sequencer . 1–6
Test Pattern Generator . 1–6
Control Synchronizer . 1–6
Switch . 1–6
Design Example . 1–6

MegaCore Verification . 1–6
Performance and Resource Utilization . 1–7

Color Space Converter . 1–7
Chroma Resampler . 1–7
Gamma Corrector . 1–8
2D FIR Filter . 1–9
2D Median Filter . 1–9
Alpha Blending Mixer . 1–10
Scaler . 1–10
Clipper . 1–11
Deinterlacer . 1–12
Interlacer . 1–12
Frame Buffer . 1–13
Clocked Video Input . 1–13
Clocked Video Output . 1–14
Color Plane Sequencer . 1–14
Test Pattern Generator . 1–15
Switch . 1–16

Chapter 2. Getting Started with Altera IP Cores
Installation and Licensing . 2–1
Evaluating an IP Core . 2–2

OpenCore Plus Time-Out Behavior . 2–2
Video and Image Processing Suite User Guide

iv Contents
Design Flows . 2–2
SOPC Builder Design Flow . 2–4

Specify Parameters . 2–4
Complete the SOPC Builder System . 2–5
Simulate the System . 2–5

MegaWizard Plug-In Manager Design Flow . 2–6
Specify Parameters . 2–6
Simulate the Design . 2–7
Compile and Program . 2–8

Generated Files . 2–8

Chapter 3. Parameter Settings
Color Space Converter (CSC) . 3–2
Chroma Resampler . 3–4
Gamma Corrector . 3–4
2D FIR Filter . 3–5
2D Median Filter . 3–6
Alpha Blending Mixer . 3–7
Scaler . 3–8
Clipper . 3–10
Deinterlacer . 3–11
Interlacer . 3–13
Frame Reader . 3–14
Frame Buffer . 3–14
Clocked Video Input . 3–16
Clocked Video Output . 3–17
Color Plane Sequencer . 3–19
Test Pattern Generator . 3–19
Control Synchronizer . 3–20
Switch . 3–21

Chapter 4. Interfaces
Interface Types . 4–1
Avalon-ST Video Protocol . 4–2

Packets . 4–2
Video Data Packets . 4–3
Static Parameters of Video Data Packets . 4–3

Bits Per Pixel Per Color Plane . 4–4
Color Pattern . 4–4
Specifying Color Pattern Options . 4–6
Structure of Video Data Packets . 4–7

Control Data Packets . 4–7
Use of Control Data Packets . 4–9
Structure of a Control Data Packet . 4–9

Ancillary Data Packets . 4–10
User-Defined and Altera-Reserved Packets . 4–11
Packet Propagation . 4–11
Transmission of Avalon-ST Video Over Avalon-ST Interfaces . 4–12
Packet Transfer Examples . 4–12

Example 1 (Data Transferred in Parallel) . 4–12
Example 2 (Data Transferred in Sequence) . 4–15
Example 3 (Control Data Transfer) . 4–16

Avalon-MM Slave Interfaces . 4–17
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Contents v
Specification of the Type of Avalon-MM Slave Interfaces . 4–19
Avalon-MM Master Interfaces . 4–20

Specification of the Type of Avalon-MM Master Interfaces . 4–20
Buffering of Non-Image Data Packets in Memory . 4–21

Chapter 5. Functional Descriptions
Color Space Converter . 5–1

Input and Output Data Types . 5–1
Color Space Conversion . 5–1
Constant Precision . 5–2
Calculation Precision . 5–2
Result of Output Data Type Conversion . 5–3

Chroma Resampler . 5–4
Horizontal Resampling (4:2:2) . 5–4

4:4:4 to 4:2:2 . 5–4
4:2:2 to 4:4:4 . 5–5

Vertical Resampling (4:2:0) . 5–6
Gamma Corrector . 5–7
2D FIR Filter . 5–8

Calculation Precision . 5–8
Coefficient Precision . 5–8
Result to Output Data Type Conversion . 5–8

2D Median Filter . 5–9
Alpha Blending Mixer . 5–10

Alpha Blending . 5–11
Scaler . 5–13

Nearest Neighbor Algorithm . 5–13
Bilinear Algorithm . 5–13

Resource Usage . 5–14
Algorithmic Description . 5–14

Polyphase and Bicubic Algorithms . 5–14
Resource Usage . 5–16
Algorithmic Description . 5–17
Choosing and Loading Coefficients . 5–17
Recommended Parameters . 5–19

Clipper . 5–20
Deinterlacer . 5–21

Deinterlacing Methods . 5–22
Bob with Scanline Duplication . 5–22
Bob with Scanline Interpolation . 5–22
Weave . 5–23
Motion-Adaptive . 5–23
Pass-Through Mode for Progressive Frames . 5–25

Frame Buffering . 5–25
Frame Rate Conversion . 5–26
Behavior When Unexpected Fields are Received . 5–27
Handling of Avalon-ST Video Control Packets . 5–27

Interlacer . 5–28
Frame Reader . 5–29
Frame Buffer . 5–32

Locked Frame Rate Conversion . 5–33
Interlaced Video Streams . 5–34
Handling of Avalon-ST Video Control Packets . 5–34

Clocked Video Input . 5–35
July 2010 Altera Corporation Video and Image Processing Suite User Guide

vi Contents
Video Formats . 5–35
Embedded Synchronization Format . 5–35
Separate Synchronization Format . 5–37
Video Locked Signal . 5–37

Control Port . 5–38
Format Detection . 5–38

Interrupts . 5–39
Generator Lock . 5–40
Overflow . 5–41
Timing Constraints . 5–41
Active Format Description Extractor . 5–42

Clocked Video Output . 5–43
Video Formats . 5–43

Embedded Synchronization Format . 5–45
Separate Synchronization Format . 5–46

Control Port . 5–46
Video Modes . 5–46

Interrupts . 5–51
Generator Lock . 5–51
Underflow . 5–53
Timing Constraints . 5–54
Active Format Description Inserter . 5–54

Color Plane Sequencer . 5–55
Rearranging Color Patterns . 5–55
Combining Color Patterns . 5–55
Splitting/Duplicating . 5–56
Subsampled Data . 5–57
Avalon-ST Video Stream Requirements . 5–57

Test Pattern Generator . 5–58
Test Pattern . 5–58
Generation of Avalon-ST Video Control Packets and Run-Time Control . 5–59
Output Data Types . 5–59

Control Synchronizer . 5–61
Using the Control Synchronizer . 5–61

Switch . 5–64
Mixer Layer Switching . 5–64

Stall Behavior and Error Recovery . 5–66
Color Space Converter . 5–66

Error Recovery . 5–66
Chroma Resampler . 5–66

Error Recovery . 5–67
Gamma Corrector . 5–67

Error Recovery . 5–67
2D FIR Filter . 5–67

Error Recovery . 5–67
2D Median Filter . 5–67

Error Recovery . 5–68
Alpha Blending Mixer . 5–68

Error Recovery . 5–68
Scaler . 5–69

Error Recovery . 5–70
Clipper . 5–70

Error Recovery . 5–70
Deinterlacer . 5–70
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Contents vii
Error Recovery . 5–71
Interlacer . 5–71

Error Recovery . 5–71
Frame Reader . 5–71
Frame Buffer . 5–71

Error Recovery . 5–72
Color Plane Sequencer . 5–72

Error Recovery . 5–72
Test Pattern Generator . 5–72
Control Synchronizer . 5–72

Error Recovery . 5–73
Clocked Video Input . 5–73

Error Recovery . 5–73
Clocked Video Output . 5–73

Error Recovery . 5–73
Switch . 5–73

Latency . 5–73

Chapter 6. Signals
Color Space Converter . 6–1
Chroma Resampler . 6–2
Gamma Corrector . 6–2
2D FIR Filter . 6–3
2D Median Filter . 6–4
Alpha Blending Mixer . 6–5
Scaler . 6–6
Clipper . 6–7
Deinterlacer . 6–8
Interlacer . 6–11
Frame Reader . 6–12
Frame Buffer . 6–13
Clocked Video Input . 6–15
Clocked Video Output . 6–17
Color Plane Sequencer . 6–18
Test Pattern Generator . 6–19
Control Synchronizer . 6–20
Switch . 6–21

Chapter 7. Control Register Maps
Color Space Converter . 7–1
Gamma Corrector . 7–2
2D FIR Filter . 7–3
Alpha Blending Mixer . 7–3
Scaler . 7–4
Clipper . 7–6
Deinterlacer . 7–6
Interlacer . 7–7
Frame Reader . 7–8
Frame Buffer . 7–8
Clocked Video Input . 7–10
Clocked Video Output . 7–11
Test Pattern Generator . 7–13
Control Synchronizer . 7–14
July 2010 Altera Corporation Video and Image Processing Suite User Guide

viii Contents
Switch . 7–15

Additional Information
Document Revision History . Info–1
How to Contact Altera . Info–1
Typographic Conventions . Info–2
Referenced Documents . Info–2
Video and Image Processing Suite User Guide July 2010 Altera Corporation

July 2010 Altera Corporation
1. About This MegaCore Function Suite
This document describes the Altera® Video and Image Processing Suite collection of
IP cores that ease the development of video and image processing designs. You can
use the following IP cores in a wide variety of image processing and display
applications.

The Video and Image Processing Suite contains the following MegaCore functions:

■ “Color Space Converter (CSC)”

■ “Chroma Resampler”

■ “Gamma Corrector”

■ “2D FIR Filter”

■ “2D Median Filter”

■ “Alpha Blending Mixer”

■ “Scaler”

■ “Clipper”

■ “Deinterlacer”

■ “Interlacer”

■ “Frame Reader”

■ “Frame Buffer”

■ “Clocked Video Input”

■ “Clocked Video Output”

■ “Color Plane Sequencer”

■ “Test Pattern Generator”

■ “Control Synchronizer”

■ “Switch”

New Features
This version has the following new features:

■ The new Interlacer MegaCore® function converts a stream of progressive video
frames into a stream of interlaced video fields by dropping half the lines.

■ The Clocked Video Output and Clocked Video Input MegaCore functions can now
insert ancillary packets into and extract ancillary packet from the vertical blanking.
Active format description (AFD) ancillary packets contain aspect ratio and
protected area information.
Video and Image Processing Suite User Guide

1–2 Chapter 1: About This MegaCore Function Suite
Release Information
Release Information
Table 1–1 provides information about this release of the Altera Video and Image
Processing Suite MegaCore functions.

f For more information about this release, refer to the MegaCore IP Library Release Notes
and Errata.

Device Family Support
MegaCore functions can provide the types of support for target Altera device families
described in Table 1–2.

Table 1–3 shows the level of support offered by the Video and Image Processing Suite
MegaCore functions to each Altera device family.

Table 1–1. Video and Image Processing Suite Release Information

Item Description

Version 10.0 (All MegaCore functions)

Release Date July 2010

Ordering Code IPS-VIDEO (Video and Image Processing Suite)

Product IDs

0003 (Color Space Converter)

00B1 (Chroma Resampler)

00B2 (Gamma Corrector)

00B3 (2D FIR Filter)

00B4 (2D Median Filter)

00B5 (Alpha Blending Mixer)

00B7 (Scaler)

00C8 (Clipper)

00B6 (Deinterlacer)

00DC (Interlacer)

00D1 (Frame Reader)

00C3 (Frame Buffer)

00C4 (Clocked Video Input)

00C5 (Clocked Video Output)

00C9 (Color Plane Sequencer)

00CA (Test Pattern Generator)

00D0 (Control Synchronizer)

00CF (Switch)

Vendor ID(s) 6AF7

Table 1–2. Altera IP Core Device Support Levels

FPGA Device Families HardCopy® Device Families

Preliminary—The core is verified with preliminary timing
models for this device family. The core meets all
functional requirements, but might still be undergoing
timing analysis for the device family. It can be used in
production designs with caution.

HardCopy Companion—The core is verified with preliminary
timing models for the HardCopy companion device. The core
meets all functional requirements, but might still be undergoing
timing analysis for HardCopy device family. It can be used in
production designs with caution.

Final—The core is verified with final timing models for
this device family. The core meets all functional and
timing requirements for the device family and can be used
in production designs.

HardCopy Compilation—The core is verified with final timing
models for the HardCopy device family. The core meets all
functional and timing requirements for the device family and
can be used in production designs.

Table 1–3. Device Family Support (Part 1 of 2)

Device Family Support

Arria® GX Final

Arria II GX Preliminary

Cyclone® II Final

Cyclone III Final
Video and Image Processing Suite User Guide July 2010 Altera Corporation

http://www.altera.com/literature/rn/rn_ip.pdf
http://www.altera.com/literature/rn/rn_ip.pdf

Chapter 1: About This MegaCore Function Suite 1–3
Features
Features
The following features are common to all of the Video and Image Processing Suite
MegaCore functions:

■ Common Avalon Streaming (Avalon-ST) interface and Avalon-ST Video protocol

■ Avalon Memory-Mapped (Avalon-MM) interfaces for run-time control input and
connections to external memory blocks

■ Easy-to-use MegaWizard™ interface for parameterization and hardware
generation

■ IP functional simulation models for use in Altera-supported VHDL and Verilog
HDL simulators

■ Support for OpenCore Plus evaluation

■ SOPC Builder ready

1 SOPC Builder systems use an active low reset while the Video and Image
Processing Suite MegaCore functions use an active high reset. Arbitrator
logic in SOPC Builder automatically inverts the reset signals.

General Description
This section provides a general description of each MegaCore function in the Video
and Image Processing Suite.

Cyclone III LS Preliminary

Cyclone IV Preliminary

HardCopy II HardCopy Compilation

HardCopy III HardCopy Companion

HardCopy IV HardCopy Companion

Stratix® Final

Stratix II Final

Stratix III Final

Stratix IV Final

Stratix IV GT Preliminary

Stratix V Preliminary

Other device families No support

Table 1–3. Device Family Support (Part 2 of 2)

Device Family Support
July 2010 Altera Corporation Video and Image Processing Suite User Guide

1–4 Chapter 1: About This MegaCore Function Suite
General Description
Color Space Converter (CSC)
The Color Space Converter MegaCore function transforms video data between color
spaces. These color spaces allow you to specify colors using three coordinate values.
The Color Space Converter supports a number of predefined conversions between
standard color spaces, and allows the entry of custom coefficients to translate between
any two three-valued color spaces. You can configure the Color Space Converter to
change conversion values at run time using an Avalon-MM slave interface.

Chroma Resampler
The Chroma Resampler MegaCore function resamples video data to and from
common sampling formats. The human eye is more sensitive to brightness than tone.
Taking advantage of this characteristic, video transmitted in the Y’CbCr color space
often subsamples the color components (Cb and Cr) to save on data bandwidth.

Gamma Corrector
The Gamma Corrector MegaCore function corrects video streams for the physical
properties of display devices. For example, the brightness displayed by a cathode-ray
tube monitor has a nonlinear response to the voltage of a video signal. You can
configure the Gamma Corrector with a look-up table that models the nonlinear
function to compensate for the non linearity. The look-up table can then transform the
video data and give the best image on the display.

2D FIR Filter
The 2D FIR Filter MegaCore function performs 2D convolution using matrices of 3×3,
5×5, or 7×7 coefficients. The 2D FIR Filter retains full precision throughout the
calculation while making efficient use of FPGA resources. With suitable coefficients,
the 2D FIR Filter can perform operations such as sharpening, smoothing, and edge
detection. You can configure the 2D FIR Filter to change coefficient values at run time
with an Avalon-MM slave interface.

2D Median Filter
The 2D Median Filter MegaCore function applies 3×3 or 5×5 pixel median filters to
video images. Median filtering removes speckle noise and salt-and-pepper noise
while preserving the sharpness of edges in video images.

Alpha Blending Mixer
The Alpha Blending Mixer MegaCore function mixes together up to 12 image layers.
The Alpha Blending Mixer supports both picture-in-picture mixing and image
blending. Each foreground layer can be independently activated and moved at run
time using an Avalon-MM slave interface.
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 1: About This MegaCore Function Suite 1–5
General Description
Scaler
The Scaler MegaCore function resizes video streams. The Scaler supports nearest-
neighbor, bilinear, bicubic, and polyphase scaling algorithms. You can configure the
Scaler to change resolutions or filter coefficients, or both, at run time using an Avalon-
MM slave interface.

Clipper
The Clipper MegaCore function clips video streams. You can configure the Clipper at
compile time or optionally at run time using an Avalon-MM slave interface.

Deinterlacer
The Deinterlacer MegaCore function converts interlaced video to progressive video
using a bob, weave, or simple motion-adaptive algorithm. Interlaced video is
commonly used in television standards such as phase alternation line (PAL) and
national television system committee (NTSC), but progressive video is required by
LCD displays and is often more useful for subsequent image processing functions.

Additionally, the Deinterlacer can provide double -buffering or triple-buffering in
external RAM. Double-buffering can help solve throughput problems (burstiness) in
video systems. Triple-buffering can provide simple frame rate conversion.

Interlacer
The Interlacer MegaCore function converts progressive video to interlaced video by
dropping half the lines of incoming progressive frames. You can configure the
MegaCore function to discard or propagate already-interlaced input. You can also
disable the interlacer at run time to propagate progressive frames unchanged.

Frame Reader
The Frame Reader MegaCore function reads video frames stored in external memory
and outputs them as a video stream. You can configure the MegaCore function to read
multiple video frames using an Avalon-MM slave interface.

Frame Buffer
The Frame Buffer MegaCore function buffers video frames into external RAM. The
Frame Buffer supports double or triple buffering with a range of options for frame
dropping and repeating.

Clocked Video Input
The Clocked Video Input MegaCore function converts clocked video formats (such as
BT656, BT1120, and DVI) to Avalon-ST Video. You can configure the Clocked Video
Input at run time using an Avalon-MM slave interface.
July 2010 Altera Corporation Video and Image Processing Suite User Guide

1–6 Chapter 1: About This MegaCore Function Suite
MegaCore Verification
Clocked Video Output
The Clocked Video Output MegaCore function converts Avalon-ST Video to clocked
video formats (such as BT656, BT1120, and DVI). You can configure the Clocked Video
Output at run time using an Avalon-MM slave interface.

Color Plane Sequencer
The Color Plane Sequencer MegaCore function changes how color plane samples are
transmitted across the Avalon-ST interface.

You can configure the channel order in sequence or in parallel. In addition to
reordering color plane samples, the Color Plane Sequencer splits and joins video
streams, giving control over the routing of color plane samples.

Test Pattern Generator
The Test Pattern Generator generates a video stream that displays either still color
bars for use as a test pattern or a constant color for use as a uniform background. You
can use this MegaCore function during the design cycle to validate a video system
without the possible throughput issues associated with a real video input.

Control Synchronizer
You can use the Control Synchronizer MegaCore function to synchronize the
configuration change of MegaCores with an event in a video stream. For example, this
MegaCore function could synchronize the changing of a position of a video layer with
the changing of the size of the layer.

Switch
The Switch MegaCore function allows the connection of up to twelve input video
streams to twelve output video streams and the run-time reconfiguration of those
connections via a control input.

Design Example
A provided design example offers a starting point to quickly understand the Altera
video design methodology, enabling you to build full video processing systems on an
FPGA.

f For more information about this design example, refer to AN427: Video and Image
Processing Up Conversion Example Design.

MegaCore Verification
Before releasing a version of each MegaCore function, Altera runs comprehensive
regression tests to verify quality and correctness.

Custom variations of the MegaCore functions exercise various parameter options. The
resulting simulation models are thoroughly simulated and the results verified against
bit-accurate master simulation models.
Video and Image Processing Suite User Guide July 2010 Altera Corporation

http://www.altera.com/literature/an/an427.pdf
http://www.altera.com/literature/an/an427.pdf

Chapter 1: About This MegaCore Function Suite 1–7
Performance and Resource Utilization
Performance and Resource Utilization
This section shows typical expected performance for the Video and Image Processing
Suite MegaCore functions with the Quartus® II software targeting Cyclone III and
Stratix III devices.

1 Cyclone III devices use combinational look-up tables (LUTs) and logic registers;
Stratix III devices use combinational adaptive look-up tables (ALUTs) and logic
registers.

Color Space Converter
Table 1–4 shows the performance figures for the Color Space Converter.

Chroma Resampler
Table 1–5 shows the performance figures for the Chroma Resampler.

Table 1–4. Color Space Converter Performance

Device Family Combinational
LUTs/ALUTs

Logic
Registers

Memory DSP Blocks fMAX
(MHz)Bits M9K (9×9) (18×18)

Converting 1,080 pixel 10-bit Studio R’G’B’ to HDTV Y’CbCr using 18-bit coefficients and 27-bit summands.

Cyclone III (1) 517 592 — — 6 — 237

Stratix III (2) 430 505 — — — 6 350

Converting 1024×768 14-bit Y’UV to Computer R’G’B’ using 18-bit coefficients and 15-bit summands.

Cyclone III (1) 525 633 — — 6 — 237

Stratix III (2) 421 537 — — — 6 329

Converting 640×480 8-bit SDTV Y’CbCr to Computer R’G’B’ using 9-bit coefficients and 16-bit summands, color planes in
parallel.

Cyclone III (1) 574 818 — — 9 — 238

Stratix III (2) 469 665 — — — 9 394

Converting 720×576 8-bit Computer R’G’B’ to Y’UV using 9-bit coefficients and 8-bit summands.

Cyclone III (1) 394 427 — — 3 — 238

Stratix III (2) 337 376 — — — 3 395

Notes to Table 1–4:

(1) EP3C10F256C6 devices.
(2) EP3SE50F780C2 devices.

Table 1–5. Chroma Resampler Performance (Part 1 of 2)

Device Family Combinational
LUTs/ALUTs

Logic
Registers

Memory DSP Blocks fMAX
(MHz)Bits M9K (9×9) (18×18)

Upsampling from 4:2:0 to 4:4:4 with a parallel data interface and run time control of resolutions up to extended graphics
array format (XGA - 1024x768). This parameterization uses luma-adaptive filtering on the horizontal resampling and
nearest-neighbor on the vertical resampling.

Cyclone III (1) 2,262 1,771 16,384 4 — — 158

Stratix III (2) 1,559 1,769 16,384 4 — — 261
July 2010 Altera Corporation Video and Image Processing Suite User Guide

1–8 Chapter 1: About This MegaCore Function Suite
Performance and Resource Utilization
Gamma Corrector
Table 1–6 shows the performance figures for the Gamma Corrector.

Upsamping from 4:2:2 to 4:4:4 with a sequential data interface at quarter common intermediate format (QCIF - 176x144)
using luma-adaptive filtering.

Cyclone III (1) 998 787 — — — — 212

Stratix III (2) 656 785 — — — — 356

Downsampling from 4:4:4 to 4:2:0 with a parallel data interface and run-time control of resolutions up to XGA (1024x768).
The parameterization uses anti-aliasing filtering on the horizontal resampling and nearest-neighbor on the vertical.

Cyclone III (1) 1,848 1,236 4,096 1 — — 149

Stratix III (2) 1,115 1,240 4,096 1 — — 296

Downsamping from 4:4:4 to 4:2:2 with a sequential data interface at quarter common intermediate format (QCIF - 176x144)
using an anti-aliasing filter.

Cyclone III (1) 848 531 — — — — 194

Stratix III (2) 419 533 — — — — 357

Notes to Table 1–5:

(1) Using EP3C10F256C6 devices.
(2) Using EP3SE50F780C2 devices.

Table 1–5. Chroma Resampler Performance (Part 2 of 2)

Device Family Combinational
LUTs/ALUTs

Logic
Registers

Memory DSP Blocks fMAX
(MHz)Bits M9K (9×9) (18×18)

Table 1–6. Gamma Corrector Performance

Device Family Combinational
LUTs/ALUTs

Logic
Registers

Memory DSP Blocks fMAX
(MHz)Bits M9K (9×9) (18×18)

Gamma correcting 1,080 pixel one color 10-bit data.

Cyclone III (1) 242 153 10,260 3 — — 233

Stratix III (2) 172 153 10,260 3 — — 393

Gamma correcting 720×576 one color 10-bit data.

Cyclone III (1) 242 153 10,260 3 — — 233

Stratix III (2) 172 153 10,260 3 — — 393

Gamma correcting 128×128 three color 8-bit data.

Cyclone III (1) 226 137 2,064 1 — — 229

Stratix III (2) 160 137 2,064 1 — — 383

Gamma correcting 64×64 three color 8-bit data.

Cyclone III (1) 226 137 2,064 1 — — 229

Stratix III (2) 160 137 2,064 1 — — 383

Notes to Table 1–6:

(1) EP3C10F256C6 devices.
(2) EP3SE50F780C2 devices.
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 1: About This MegaCore Function Suite 1–9
Performance and Resource Utilization
2D FIR Filter
Table 1–7 on page 1–9 shows the performance figures for the 2D FIR Filter.

2D Median Filter
Table 1–8 shows the performance figures for the 2D Median Filter.

Table 1–7. 2D FIR Filter Performance

Device Family Combinational
LUTs/ALUTs

Logic
Registers

Memory DSP Blocks fMAX
(MHz)Bits M9K (9×9) (18×18)

Edge detecting 3×3 asymmetric filter, working on 352×288 8-bit R’G’B’, using 3 bit coefficients.

Cyclone III (1) 965 987 16,896 4 9 — 190

Stratix III (2) 750 830 16,896 4 — 9 349

Smoothing 3×3 symmetric filter, working on 640×480 8-bit R’G’B’, using 9 bit coefficients.

Cyclone III (1) 981 960 30,720 4 6 — 195

Stratix III (2) 761 909 30,720 4 — 4 354

Sharpening 5×5 symmetric filter, working on 640×480 in 8-bit R’G’B’, using 9 bit coefficients.

Cyclone III (1) 1,858 1,791 61,440 8 12 — 183

Stratix III (2) 1,398 1,598 61,440 8 — 8 295

Smoothing 7×7 symmetric filter, working on 1,280×720 in 10-bit R’G’B’, using 15 bit coefficients.

Cyclone III (1) 3,584 3,612 230,400 30 20 — 164

Stratix III (2) 2,663 3,365 230,400 30 — 20 263

Notes to Table 1–7:

(1) EP3C10F256C6 devices.
(2) EP3SE50F780C2 devices.

Table 1–8. 2D Median Filter Performance (Part 1 of 2)

Device Family Combinational
LUTs/ALUTs

Logic
Registers

Memory DSP Blocks fMAX
(MHz)Bits M9K (9×9) (18×18)

3×3 median filtering HDTV 720 pixel monochrome video.

Cyclone III (1) 1,575 1,200 25,600 6 — — 233

Stratix III (2) 994 1,200 25,600 6 — — 351

Median filtering 64×64 pixel R’G’B frames using a 3×3 kernel of pixels.

Cyclone III (1) 1,535 1,154 3,072 2 — — 230

Stratix III (2) 971 1,155 3,072 2 — — 349

Median filtering 352×288 pixel two color frames using a 5×5 kernel of pixels.

Cyclone III (1) 5,416 3,828 28,160 8 — — 203

Stratix III (2) 2,682 3,832 28,160 8 — — 300

7×7 median filtering 352×288 pixel monochrome video.

Cyclone III (3) 10,813 7,296 16,896 6 — — 191
July 2010 Altera Corporation Video and Image Processing Suite User Guide

1–10 Chapter 1: About This MegaCore Function Suite
Performance and Resource Utilization
Alpha Blending Mixer
Table 1–9 shows the performance figures for the Alpha Blending Mixer.

Scaler
Table 1–10 shows the performance figures for the Scaler.

Stratix III (2) 4,850 7,296 16,896 6 — — 270

Notes to Table 1–8:

(1) EP3C10F256C6 devices.
(2) EP3SE50F780C2 devices.
(3) EP3C16F484C6 devices.

Table 1–8. 2D Median Filter Performance (Part 2 of 2)

Device Family Combinational
LUTs/ALUTs

Logic
Registers

Memory DSP Blocks fMAX
(MHz)Bits M9K (9×9) (18×18)

Table 1–9. Alpha Blending Mixer Performance

Device Family Combinational
LUTs/ALUTs

Logic
Registers

Memory DSP Blocks fMAX
(MHz)Bits M9K (9×9) (18×18)

Alpha blending an on-screen display within a region of 1,024×768 pixel 10-bit Y’CbCr 4:4:4 video. Alpha blending is
performed using 16 levels of opacity from fully opaque to fully translucent.

Cyclone III (1) 1,103 764 752 1 4 — 178

Stratix III (2) 797 733 752 1 — 3 319

Drawing a picture-in-picture window over the top of a 128×128 pixel background image in 8-bit R’G’B’ color.

Cyclone III (1) 735 492 752 1 — — 211

Stratix III (2) 609 548 752 1 — — 354

Rendering two images over 352×240 pixel background 8-bit R’G’B’ video.

Cyclone III (1) 1,207 760 752 1 — — 189

Stratix III (2) 853 758 752 1 — — 325

Using alpha blending to composite three layers over the top of PAL resolution background video in 8-bit monochrome.
Alpha blending is performed using 256 levels of opacity from fully opaque to fully translucent.

Cyclone III (1) 1,924 1,300 752 1 6 — 169

Stratix III (2) 1,428 1,205 752 1 — 6 276

Notes to Table 1–9:

(1) EP3C10F256C6 devices.
(2) EP3SE50F780C2 devices.

Table 1–10. Scaler Performance (Part 1 of 2)

Device Family Combinational
LUTs/ALUTs

Logic
Registers

Memory DSP Blocks fMAX
(MHz)Bits M9K (9×9) (18×18)

Scaling 640×480, 8-bit, three color data up to 1,024×768 with linear interpolation. This can be used to convert video
graphics array format (VGA - 640×480) to video electronics standards association format (VESA - 1024×768).

Cyclone III (1) 945 687 30,720 6 4 — 191
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 1: About This MegaCore Function Suite 1–11
Performance and Resource Utilization
Clipper
Table 1–11 shows the performance figures for the Clipper.

Stratix III (2) 682 624 30,720 6 — 4 346

Scaling R’G’B’ QCIF to common intermediate format (CIF) with no interpolation.

Cyclone III (1) 434 297 4,224 3 — — 223

Stratix III (2) 304 298 4,224 3 — — 393

Scaling up or down between NTSC standard definition and 1080 pixel high definition using 10 taps horizontally and 9
vertically. Resolution and coefficients are set by a run-time control interface.

Cyclone III (3) 3,842 3,095 417,456 58 19 — 161

Stratix III (2) 2,225 2,757 417,456 58 — 19 264

Scaling NTSC standard definition (720x480) RGB to high definition 1080p using a bicubic algorithm.

Cyclone III (1) 1,687 1,185 69,444 13 8 8 169

Stratix III (2) 1,039 1,050 69,444 14 — 8 294

Notes to Table 1–10:

(1) EP3C10F256C6 devices.
(2) EP3SE50F780C2 devices.
(3) EP3C40F780C6 devices.

Table 1–10. Scaler Performance (Part 2 of 2)

Device Family Combinational
LUTs/ALUTs

Logic
Registers

Memory DSP Blocks fMAX
(MHz)Bits M9K (9×9) (18×18)

Table 1–11. Clipper Performance

Device Family Combinational
LUTs/ALUTs

Logic
Registers

Memory DSP Blocks fMAX
(MHz)Bits M9K (9x9) (18x18)

A 1080p60-compatible clipper with a clipping window that has fixed offsets from the size of the input frames.

Cyclone III (1) 649 484 — — — — 202

Stratix III (2) 475 484 — — — — 332

A 100×100 pixel clipper with a clipping window that is a rectangle from the input frames.

Cyclone III (1) 416 275 — — — — 192

Stratix III (2) 323 276 — — — — 333

A 1080p60-compatible clipper with a runtime interface which uses offsets to set the clipping window.

Cyclone III (1) 819 619 — — — — 189

Stratix III (2) 597 620 — — — — 327

A 100×100 pixel clipper with a run-time interface which uses a rectangle to set the clipping window.

Cyclone III (1) 560 468 — — — — 207

Stratix III (2) 449 468 — — — — 326

Notes to Table 1–11:

(1) EP3C10F256C6 devices.
(2) EP3SE50F780C2 devices.
July 2010 Altera Corporation Video and Image Processing Suite User Guide

1–12 Chapter 1: About This MegaCore Function Suite
Performance and Resource Utilization
Deinterlacer
Table 1–12 shows the performance figures for the Deinterlacer.

Interlacer
Table 1–12 shows the performance figures for the Interlacer.

Table 1–12. Deinterlacer Performance

Device Family Combinational
LUTs/ALUTs

Logic
Registers

Memory DSP Blocks fMAX
(MHz)ALUTs Bits M9K (9×9) (18×18)

Deinterlacing 64×64 pixel 8-bit R’G’B’ frames using the bob algorithm with scanline duplication.

Cyclone III (1) 538 292 — 1,536 1 — — 189

Stratix III (2) 386 293 — 1,536 1 — — 325

Deinterlacing with scanline interpolation using the bob algorithm working on 352×288 pixel 12-bit Y’CbCr 4:2:2 frames.

Cyclone III (1) 673 395 — 8,448 2 — — 184

Stratix III (2) 492 398 — 8,448 2 — — 312

Deinterlacing PAL (720×576) with 8-bit Y'CbCr 4:4:4 color using the motion-adaptive algorithm.

Cyclone III (3) 5,723 5,678 — 81,514 39 1 — 121

Stratix III (4) 4,803 5,772 5 73,292 41 — 1 243

Deinterlacing HDTV 1080i resolution with 12-bit Y’CbCr 4:4:4 color using the weave algorithm.

Cyclone III (1) 3,231 2,546 — 3,078 15 — — 170

Stratix III (2) 3,539 2,540 — 3,078 19 — — 280

Notes to Table 1–12:

(1) EP3C10F256C6 devices.
(2) EP3SE50F780C2 devices.
(3) EP3C40F780C6 devices.
(4) EP3SE110F1152C2 devices.

Table 1–13. Interlacer Performance

Device Family Combinational
LUTs/ALUTs

Logic
Registers

Memory DSP Blocks fMAX
(MHz)Bits M9K (9×9) (18×18)

Interlacing 1080p 10-bit video, 2 channels over a parallel interface.

Cyclone III (1) 460 400 — — — — 222

Stratix III (2) 303 401 — — — — 434

Interlacing 1080p 10-bit video, 2 channels over a parallel inteface, with runtime interlacing control.

Cyclone III (1) 529 444 — — — — 239

Stratix III (2) 360 444 — — — — 434

Notes to Table 1–13:

(1) EP3C5F256C6 devices.
(2) EP3SL50F484C2 devices.
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 1: About This MegaCore Function Suite 1–13
Performance and Resource Utilization
Frame Buffer
Table 1–14 shows the performance figures for the Frame Buffer.

Clocked Video Input
Table 1–15 shows the performance figures for the Clocked Video Input.

Table 1–14. Frame Buffer Performance

Device Family Combinational
LUTs/ALUTs

Logic
Registers

Memory DSP Blocks fMAX
(MHz)Bits M9K (9×9) (18×18)

Double-buffering XGA (1024×768) 8-bit RGB with a sequential data interface.

Cyclone III (1) 2,103 1,725 8,408 6 — — 161

Stratix III (2) 1,749 1,726 8,432 11 — — 300

Triple-buffering VGA (640×480) 8-bit RGB with a parallel data interface.

Cyclone III (1) 2,121 1,670 7,368 6 — — 169

Stratix III (2) 1,737 1,671 7,368 10 — — 290

Triple-buffering VGA (640×480) 8-bit RGB buffering up to 32 large Avalon-ST Video packets into RAM.

Cyclone III (1) 3,796 2,495 11,168 6 — — 145

Stratix III (2) 2,723 2,496 11,168 11 — — 228

Triple-buffering 720×576 8-bit RGB with sequential data interface and runtime control interface.

Cyclone III (1) 2,177 1,763 8,504 7 — — 162

Stratix III (2) 1,826 1,763 8,504 12 — — 304

Notes to Table 1–14:

(1) EP3C10F256C6 devices.
(2) EP3SE50F780C2 devices.

Table 1–15. Clocked Video Input Performance (Part 1 of 2)

Device Family Combinational
LUTs/ALUTs

Logic
Registers

Memory fMAX
(MHz)ALUTs M9K Bits MLAB Bits

Converts DVI 1080p60 clocked video to Avalon-ST Video.

Cyclone III (1) 411 414 — 7 51,200 — 187

Stratix III (2) 264 414 — 7 51,200 — 245

Converts PAL clocked video to Avalon-ST Video.

Cyclone III (1) 417 417 — 3 22,528 — 183

Stratix III (2) 301 417 — 3 22,528 — 228

Converts SDI 1080i60 clocked video to Avalon-ST Video.

Cyclone III (1) 417 439 — 7 43,028 — 169

Stratix III (2) 319 458 10 6 43,028 40 226

Converts SDI 1080p60 clocked video to Avalon-ST Video.

Cyclone III (1) 414 430 — 7 43,008 — 174
July 2010 Altera Corporation Video and Image Processing Suite User Guide

1–14 Chapter 1: About This MegaCore Function Suite
Performance and Resource Utilization
Clocked Video Output
Table 1–16 shows the performance figures for the Clocked Video Output.

Color Plane Sequencer
Table 1–17 shows the performance figures for the Color Plane Sequencer.

Stratix III (2) 292 458 10 6 43,008 40 226

Notes to Table 1–15:

(1) EP3C10F256C6 devices.
(2) EP3SE50F780C2 devices.

Table 1–15. Clocked Video Input Performance (Part 2 of 2)

Device Family Combinational
LUTs/ALUTs

Logic
Registers

Memory fMAX
(MHz)ALUTs M9K Bits MLAB Bits

Table 1–16. Clocked Video Output Performance

Device Family Combinational
LUTs/ALUTs

Logic
Registers

Memory fMAX
(MHz)ALUTs M9K Bits MLAB Bits

Converts Avalon-ST Video to DVI 1080p60 clocked video.

Cyclone III (1) 261 221 — 7 51,200 — 191

Stratix III (2) 174 221 — 7 51,200 — 287

Converts Avalon-ST Video to PAL clocked video.

Cyclone III (1) 279 207 — 3 22,528 — 212

Stratix III (2) 213 207 — 3 22,528 — 317

Converts Avalon-ST Video to SDI 1080i60 clocked video.

Cyclone III (1) 294 216 — 6 43,008 — 199

Stratix III (2) 230 216 — 6 43,008 — 301

Converts Avalon-ST Video to SDI 1080p60 clocked video.

Cyclone III (1) 295 216 — 6 43,008 — 200

Stratix III (2) 229 216 — 6 43,008 — 271

Notes to Table 1–16:

(1) EP3C10F256C6 devices.
(2) EP3SE50F780C2 devices.

Table 1–17. Color Plane Sequencer Performance (Part 1 of 2)

Device Family Combinational
LUTs/ALUTs

Logic
Registers

Memory DSP Blocks fMAX
(MHz)Bits M9K (9×9) (18×18)

Rearranging a channels in sequence 4:2:2 stream, from Cb,Y,Cr,Y to Y,Cb,Y,Cr. 8 bit data.

Cyclone III (1) 291 243 — — — — 261

Stratix III (2) 204 243 — — — — 436

Joining a single channel luminance stream and a channels in sequence horizontally half-subsampled chrominance stream
to a single 4:2:2 channels in sequence output stream. 8 bit data.

Cyclone III (1) 374 313 — — — — 261
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 1: About This MegaCore Function Suite 1–15
Performance and Resource Utilization
Test Pattern Generator
Table 1–18 shows the performance figures for the Test Pattern Generator

Stratix III (2) 262 313 — — — — 391

Splitting a 4:2:2 stream from 2 channels in parallel to a single channel luminance output stream and a channels in sequence
horizontally half-subsampled chrominance output stream. 8 bit data.

Cyclone III (1) 451 335 — — — — 231

Stratix III (2) 305 336 — — — — 369

Rearranging 3 channels in sequence to 3 channels in parallel. 8 bit data.

Cyclone III (1) 242 249 — — — — 258

Stratix III (2) 186 253 — — — — 440

Notes to Table 1–17:

(1) EP3C10F256C6 devices.
(2) EP3SE50F780C2 devices.

Table 1–17. Color Plane Sequencer Performance (Part 2 of 2)

Device Family Combinational
LUTs/ALUTs

Logic
Registers

Memory DSP Blocks fMAX
(MHz)Bits M9K (9×9) (18×18)

Table 1–18. Test Pattern Generator Performance

Device Family Combinational
LUTs/ALUTs

Logic
Registers

Memory DSP Blocks fMAX
(MHz)Bits M9K (9×9) (18×18)

Producing a 400×x200, 8-bit 4:2:0 Y'Cb'Cr' stream with a parallel data interface.

Cyclone III (1) 164 112 192 2 — — 332

Stratix III (2) 158 113 192 2 — — 545

Producing a 640×480, 8-bit R'G'B' stream with a sequential data interface.

Cyclone III (1) 212 118 192 3 — — 287

Stratix III (2) 181 119 192 3 — — 485

Producing a 720×480, 10-bit 4:2:2 Y'Cb'Cr' interlaced stream with a sequential data interface.

Cyclone III (1) 258 138 240 3 — — 245

Stratix III (2) 233 138 240 3 — — 489

Producing a 1920×1080, 10-bit 4:2:2 Y'Cb'Cr' interlaced stream with a parallel data interface. The resolution of the pattern
can be changed using the run-time control interface.

Cyclone III (1) 365 208 304 4 — — 263

Stratix III (2) 248 208 304 4 — — 481

Notes to Table 1–18:

(1) EP3C10F256C6 devices.
(2) EP3SE50F780C2 devices.
July 2010 Altera Corporation Video and Image Processing Suite User Guide

1–16 Chapter 1: About This MegaCore Function Suite
Performance and Resource Utilization
Switch
Table 1–19 shows the performance figures for the Switch.

Table 1–19. Switch Performance

Device Family Combinational
LUTs/ALUTs

Logic
Registers

Memory DSP Blocks fMAX
(MHz)Bits M9K (9×9) (18×18)

2 input, 2 output switch with alpha channels disabled and doing three colors in sequence.

Cyclone III 122 127 0 0 0 0 306

Stratix III 79 128 0 0 0 0 538

12 input, 12 output switch with alpha channels enabled and doing three colors in parallel.

Cyclone III 6151 2547 0 0 0 0 150

Stratix III 5082 2657 0 0 0 0 274
Video and Image Processing Suite User Guide July 2010 Altera Corporation

July 2010 Altera Corporation
2. Getting Started with Altera IP Cores
This chapter provides a general overview of the Altera IP core design flow to help you
quickly get started with any Altera IP core. The Altera IP library is installed as part of
the Quartus II installation process. You can select and parameterize any Altera IP core
from the library. Altera provides an integrated MegaWizard GUI that allows you to
customize IP cores to support a wide variety of applications. The MegaWizard
interface guides you through the setting of parameter values and selection of optional
ports.

The following sections describe the general installation, design flow, evaluation, and
production use of Altera IP cores.

Installation and Licensing
The Altera IP Library is distributed with the Quartus II software and downloadable
from the Altera website (www.altera.com).

Figure 2–1 shows the directory structure after you install an Altera IP core, where
<path> is the installation directory. The default installation directory on Windows is
C:\altera\<version number>; on Linux it is /opt/altera<version number>.

You can evaluate an IP core in simulation and in hardware before you purchase a
license. For most Altera IP cores, you can use Altera’s free OpenCore Plus evaluation
feature for this purpose. Some Altera IP cores do not require use of this special feature
for evaluation. You can evaluate the IP core until you are satisfied with its
functionality and performance. You must purchase a license for the IP core when you
want to take your design to production.

After you purchase a license for an Altera IP core, you can request a license file from
the Altera Licensing page of the Altera website and install the license on your
computer. When you request a license file, Altera emails a license.dat file to you. If
you do not have internet access, contact your local Altera representative.

f For additional information about installation and licensing, refer to Altera Software
Installation and Licensing.

Figure 2–1. IP core Directory Structure

<path>

<IP core name> or uniPHY
Contains the IP core files and documentation

common
Contains shared components

Installation directory

ip
Contains the Altera IP Library and third-party IP cores

altera
Contains the Altera IP Library
Video and Image Processing Suite User Guide

http://www.altera.com
http://www.altera.com/licensing
http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/manual/quartus_install.pdf

2–2 Chapter 2: Getting Started with Altera IP Cores
Evaluating an IP Core
Evaluating an IP Core
The Altera IP library contains both free and individually licenced IP cores. With the
Altera free OpenCore Plus evaluation feature, you can evaluate separately licenced IP
cores in the following ways prior to purchasing a production license:

■ Simulate the behavior of an Altera IP core in your system using the Quartus II
software and Altera-supported VHDL and Verilog HDL simulators

■ Verify the functionality of your design and evaluate its size and speed quickly and
easily

■ Generate device programming files for designs that include IP cores. These files
are time-limited under the OpenCore Plus evaluation program.

■ Program a device and verify your design in hardware.

OpenCore Plus Time-Out Behavior
OpenCore Plus hardware evaluation supports the following two operation modes:

■ Untethered—the design runs for a limited time.

■ Tethered—requires a connection between your board and the host computer. If
tethered mode is supported by all Altera IP cores in a design, the device can
operate for a longer time or indefinitely.

All IP cores in a device time out simultaneously when the most restrictive evaluation
time is reached. If there is more than one IP core in a design, a specific IP core's
time-out behavior may be masked by the time-out behavior of the other IP cores.

1 For IP cores, the untethered time-out is 1 hour; the tethered time-out value
is indefinite.

Your design stops working after the hardware evaluation time expires.

1 The Quartus II software uses OpenCore Plus Files (.ocp) in your project
directory to identify your use of the OpenCore Plus evaluation program.
After you activate the feature, do not delete these files.

f For information about the OpenCore Plus evaluation program, refer to
AN320: OpenCore Plus Evaluation of Megafunctions.

Design Flows
You can use either one of the following flows to parameterize Altera IP cores:

■ SOPC Builder flow

■ MegaWizard Plug-in Manager flow
Video and Image Processing Suite User Guide July 2010 Altera Corporation

http://www.altera.com/literature/an/an320.pdf

Chapter 2: Getting Started with Altera IP Cores 2–3
Design Flows
Table 2–1 summarizes the advantages offered by the different parameterization flows.

Figure 2–2 shows the stages for creating a system with an Altera IP core and the
Quartus II software.

The following sections describe the general steps for the use of each design flow.

Table 2–1. Select Design Flow

SOPC Builder Flow MegaWizard Plug-in Manager Flow

■ You want to use SOPC Builder to create a
complete system that includes an Altera IP
core with other components available in
SOPC Builder such as the Nios II processor,
External Memory Controllers, DMA
controllers, on-chip memories, FIFOs, or
other IP cores.

■ You want SOPC Builder to automatically
implement standard interface connections
between the various components in your
design, eliminating the requirement to design
and connect low-level interfaces.

■ You want to parameterize the IP core variant
that you can instantiate manually in your HDL
or schematic design.

■ You want to integrate an IP core variant that
is not yet supported by SOPC Builder.

Figure 2–2. Altera IP Core Design Flow

Select Design Flow

Specify Parameters

SOPC Builder
Flow

MegaWizard
Flow

Complete
SOPC Builder System

Specify Parameters

IP Complete

Perform
Functional Simulation

Debug Design

Does
Simulation Give

Expected Results?

Yes

Optional

Add Constraints
and Compile Design
July 2010 Altera Corporation Video and Image Processing Suite User Guide

2–4 Chapter 2: Getting Started with Altera IP Cores
SOPC Builder Design Flow
SOPC Builder Design Flow
You can use SOPC Builder to build a system that includes your customized IP core.
You easily can add other components and quickly create an SOPC Builder system.
SOPC Builder automatically generates HDL files that include all of the specified
components and interconnections. The HDL files are ready to be compiled by the
Quartus II software to produce output files for programming an Altera device. SOPC
Builder generates a simulation testbench module for supported cores that includes
basic transactions to validate the HDL files. Figure 2–3 shows a block diagram of an
example SOPC Builder system.

f For more information about system interconnect fabric, refer to System Interconnect
Fabric for Memory-Mapped Interfaces and System Interconnect Fabric for Streaming
Interfaces chapters in volume 4 of the Quartus II Handbook, and Avalon Interface
Specifications.

f For more information about SOPC Builder and the Quartus II software, refer to SOPC
Builder Features and Building Systems with SOPC Builder sections in volume 4 of the
Quartus II Handbook and Quartus II Help.

Specify Parameters
To specify IP core parameters with the SOPC Builder flow, follow these steps:

1. Create a new Quartus II project using the New Project Wizard available from the
File menu.

Figure 2–3. SOPC Builder System

Altera IP Core
Simulation

Testbench Module

System Interconnect Fabric

Peripheral 1

SOPC Builder System

Altera IP Core
Instance

Peripheral 2 Peripheral 3
Video and Image Processing Suite User Guide July 2010 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii54003.pdf
http://www.altera.com/literature/hb/qts/qts_qii54003.pdf
http://www.altera.com/literature/hb/qts/qts_qii54019.pdf
http://www.altera.com/literature/hb/qts/qts_qii54019.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v4_01.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v4_01.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v4_02.pdf

Chapter 2: Getting Started with Altera IP Cores 2–5
SOPC Builder Design Flow
2. On the Tools menu, click SOPC Builder.

3. For a new system, specify the system name and language.

4. On the System Contents tab, double-click the name of your IP core to add it to
your system. The relevant MegaWizard interface appears.

1 The System Contents tab lists Altera IP cores by category. For example, you
can find RapidIO by expanding
Interface Protocols >High Speed > RapidIO.

5. Specify the required parameters on the Parameter Settings tabs of the
MegaWizard interface. For detailed explanations of these parameters, refer to the
“Parameter Settings” chapter in this document.

6. Click Finish to complete the IP core instance and add it to the system.

Complete the SOPC Builder System
To complete the SOPC Builder system, follow these steps:

1. Add and parameterize any additional components. Some IP cores include a
complete SOPC Builder system design example.

2. Use the SOPC Builder Connection panel on the System Contents tab to connect
the components.

3. By default, clock names are not displayed. To display clock names in the Module
Name column and the clocks in the Clock column in the System Contents tab,
click Filters to display the Filters dialog box. In the Filter list, click All.

4. If you intend to simulate your SOPC builder system, on the System Generation
tab, turn on Simulation to generate a functional simulation model for your
system.

5. Click Generate to generate the system.

1 Among the files generated by SOPC Builder is the .qip file. This file
contains information about a generated IP core or system. In most cases, the
.qip file contains all of the necessary assignments and information required
to process the IP core or system in the Quartus II Compiler. Generally, a
single .qip file is generated for each SOPC Builder system. However, some
more complex SOPC Builder components generate a separate .qip file. In
that case, the system .qip file references the component .qip file.

Simulate the System
During system generation, SOPC Builder generates a functional simulation model
and testbench (for supported cores)—or example design that includes a testbench—
which you can use to simulate your system easily in any Altera-supported simulation
tool. SOPC Builder also generates a set of ModelSim® Tcl scripts and macros that you
can use to simulate the testbench and functional simulation models or clear text RTL
design files that describe your system in the ModelSim simulation software.
July 2010 Altera Corporation Video and Image Processing Suite User Guide

2–6 Chapter 2: Getting Started with Altera IP Cores
MegaWizard Plug-In Manager Design Flow
1 In the SOPC Builder design flow, the sophistication of the testbench generated for
your IP core varies by IP core. The sophistication of the generated testbench also can
depend on the HDL you specify for the system. In most cases, the testbench provides
tasks that you can use to create a test sequence specific to your SOPC Builder system.

f For information about the latest Altera-supported simulation tools, refer to the
Quartus II Software Release Notes.

f For information about simulating SOPC Builder systems, refer to Volume 4: SOPC
Builder of the Quartus II Handbook and AN 351: Simulating Nios II Embedded Processor
Designs.

MegaWizard Plug-In Manager Design Flow
The MegaWizard Plug-in Manager flow allows you to customize your IP core and
manually integrate it in your design.

Specify Parameters
To specify IP core parameters with the MegaWizard Plug-In Manager, follow these
steps:

1. Create a Quartus II project using the New Project Wizard available from the File
menu.

2. In the Quartus II software, launch the MegaWizard Plug-in Manager from the
Tools menu, and follow the prompts in the MegaWizard Plug-In Manager
interface to create or edit a custom IP core variation.

3. To select a specific Altera IP core, click the IP core in the Installed Plug-Ins list in
the MegaWizard Plug-In Manager.

For example, to specify a RapidIO MegaCore function, click Installed Plug-Ins >
Interfaces > RapidIO.

4. Specify the parameters on the Parameter Settings pages. For detailed explanations
of these parameters, refer to the “Parameter Settings” chapter in this document.

5. If the IP core provides a simulation model, specify appropriate options in the
wizard to generate a simulation model.

1 Altera IP supports a variety of simulation models, including
simulation-specific IP functional simulation models and encrypted RTL
models, and plain text RTL models. These are all cycle-accurate models. The
models allow for fast functional simulation of your IP core instance using
industry-standard VHDL or Verilog HDL simulators. For some cores, only
the plain text RTL model is generated, and you can simulate that model.

f For more information about functional simulation models for Altera IP
cores, refer to Simulating Altera IP in Third-Party Simulation Tools in volume 3
of the Quartus II Handbook.
Video and Image Processing Suite User Guide July 2010 Altera Corporation

http://www.altera.com/literature/rn/rn_qts.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v4.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v4.pdf
http://www.altera.com/literature/an/an351.pdf
http://www.altera.com/literature/an/an351.pdf
http://www.altera.com/literature/hb/qts/qts_qii53014.pdf

Chapter 2: Getting Started with Altera IP Cores 2–7
MegaWizard Plug-In Manager Design Flow
c Use the simulation models only for simulation and not for synthesis or any
other purposes. Using these models for synthesis creates a nonfunctional
design.

6. Some third-party synthesis tools can use a netlist that contains the structure of an
IP core but no detailed logic to optimize timing and performance of the design
containing it. Many Altera IP cores support this feature. To use this feature if your
synthesis tool and IP core support it, turn on Generate netlist.

7. On the Summary tab, if available, select the files you want to generate. A gray
checkmark indicates a file that is automatically generated. All other files are
optional.

If file selection is supported for your IP core, after you generate the core, a
generation report (<variation name>.html) appears in your project directory. This
file contains information about the generated files.

8. Click the Finish button, the MegaWizard interface generates the top-level HDL
code for your IP core, a .qip file containing all of the necessary assignments and
information required to process the IP core in the Quartus II Compiler, and a
simulation directory which includes files for simulation.

9. If you are working in a Quartus II project, you are prompted to add the Quartus II
IP File (.qip) to the current Quartus II project. You can also turn on Automatically
add Quartus II IP Files to all projects.

You can now integrate your custom IP core instance in your design, simulate, and
compile. While integrating your IP core instance into your design, you must make
appropriate pin assignments. You can create virtual pin to avoid making specific pin
assignments for top-level signals while you are simulating and not ready to map the
design to hardware.

1 For information about the Quartus II software, including virtual pins and the
MegaWizard Plug-In Manager, refer to Quartus II Help.

Simulate the Design
You can simulate your IP core variation with the functional simulation model and the
Verilog HDL or VHDL testbench or example design generated with your IP core, if
any. The functional simulation model and testbench files are generated in your project
directory or a designated directory. The directory may also include scripts to compile
and run the testbench.

For a complete list of models or libraries required to simulate your IP core, refer to the
scripts provided with the testbench.

f For more information about simulating Altera IP cores, refer to Simulating Altera IP in
Third-Party Simulation Tools and Simulating Designs with EDA Tools in volume 3 of the
Quartus II Handbook.
July 2010 Altera Corporation Video and Image Processing Suite User Guide

http://www.altera.com/literature/hb/qts/qts_qii53014.pdf
http://www.altera.com/literature/hb/qts/qts_qii53014.pdf
http://www.altera.com/literature/hb/qts/qts_qii53025.pdf

2–8 Chapter 2: Getting Started with Altera IP Cores
Generated Files
Compile and Program
After using SOPC Builder or the MegaWizard Plug-In Manager to define and
instantiate your IP core, you must compile your design to create programming files to
configure the FPGA.

Some Altera IP cores require that you apply constraints before compilation. These
constraint files make pin assignments and ensure that your IP core instance meets
design timing requirements.

After applying constraint files if appropriate for your IP core, you can use the Start
Compilation command on the Processing menu in the Quartus II software to compile
your design. After successfully compiling your design, program the targeted Altera
device with the Programmer and verify the design in hardware.

Generated Files
Table 2–2 describes the generated files and other files that may be in your project
directory.

The names and types of files vary depending on the variation name and HDL type
you specify during parameterization For example, a different set of files are created
based on whether you create your design in Verilog HDL or VHDL.

1 For a description of the signals that the MegaCore function variation supports, refer to
Chapter 6, Signals.

Table 2–2. Generated Files (Note 1)

File Name Description

<variation name>.bsf Quartus II block symbol file for the MegaCore function variation. You can use this file in the
Quartus II block diagram editor.

<variation name>.cmp A VHDL component declaration file for the MegaCore function variation. Add the contents
of this file to any VHDL architecture that instantiates the MegaCore function.

<variation name>.qip

A single Quartus IP file is generated that contains all of the assignments and other
information required to process your MegaCore function variation in the Quartus II
compiler. In the SOPC Builder flow, this file is automatically included in your project. In the
MegaWizard Plug-In Manager flow, you are prompted to add the .qip file to the current
Quartus II project when you exit from the wizard. In SOPC Builder, a .qip file is generated
for each MegaCore function and SOPC Builder component. Each of these .qip files are
referenced by the system level .qip file and together include all the information required to
process the system.

<variation name>.vhd, or .v
A VHDL or Verilog HDL file that defines the top-level description of the custom MegaCore
function variation. Instantiate the entity defined by this file inside your design. Include this
file when compiling your design in the Quartus II software.

<variation name>.vho or .vo VHDL or Verilog HDL output files that defines an IP functional simulation model.

<variation name>_bb.v A Verilog HDL black-box file for the MegaCore function variation. Use this file when using a
third-party EDA tool to synthesize your design.

<variation name>_syn.v A timing and resource estimation netlist for use in some third-party synthesis tools.

Note to Table 2–2:

(1) The <variation name> prefix is added automatically using the base output file name you specified in the MegaWizard interface.
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 2: Getting Started with Altera IP Cores 2–9
Generated Files
July 2010 Altera Corporation Video and Image Processing Suite User Guide

2–10 Chapter 2: Getting Started with Altera IP Cores
Generated Files
Video and Image Processing Suite User Guide July 2010 Altera Corporation

July 2010 Altera Corporation
3. Parameter Settings
This chapter describes the parameter settings for each Video and Image Processing
Suite MegaCore function. Throughout the chapter, bold text in the tables indicates
default parameter values.

Set the parameters in the MegaWizard interface, as described in Chapter 2, Getting
Started with Altera IP Cores. The MegaWizard interface allows you to select only
legal combinations of parameters, and warns you of any invalid configurations.

Figure 3–1 shows an example of the MegaWizard Plug-In Manager for the FIR Filter
2D MegaCore function. The example shows the General page of the Parameter
Settings tab.

The following sections describe the parameters for each MegaCore function.

Figure 3–1. General Page of the Parameter Settings Tab of the 2D FIR Filter MegaWizard Interface
Video and Image Processing Suite User Guide

3–2 Chapter 3: Parameter Settings
Color Space Converter (CSC)
Color Space Converter (CSC)
Table 3–1 and Table 3–2 show the Color Space Converter MegaCore function
parameters.

Table 3–1. Color Space Converter Parameter Settings Tab, General Page

Parameter Value Description

Color Plane
Configuration

Three color planes in sequence, or
Three color planes in parallel

Specifies whether the three color planes are transmitted
in sequence or in parallel.

Input Data Type:
Bits per pixel per
color plane

4–20, Default = 8 Specifies the number of input bits per pixel (per color
plane).

Input Data Type:
Data type (2) Unsigned, Signed Specifies whether the input is unsigned or signed 2’s

complement.

Input Data Type:
Guard bands (1) On or Off Enables using a defined input range.

Input Data Type:
Max (1) -524288–1048575, Default = 255 Specifies the input range maximum value.

Input Data Type:
Min (1) -524288–1048575, Default = 0 Specifies the input range minimum value.

Output Data Type:
Bits per pixel per
color plane (2)

4–20, Default = 8 Choose the number of output bits per pixel (per color
plane).

Output Data Type:
Data type Unsigned, Signed Specify whether the output is unsigned or signed 2’s

complement.

Output Data Type:
Guard bands (1) On or Off Turn on to enable a defined output range.

Output Data Type:
Max (1) -524288–1048575, Default = 255 Specify the output range maximum value.

Output Data Type:
Min (1) -524288–1048575, Default = 0 Specify the output range minimum value.

Move binary point
right (2) –16 to +16, Default = 0 Specify the number of places to move the binary point.

Remove fraction
bits by

Round values - Half up,
Round values - Half even,
Truncate values to integer

Choose the method of discarding fraction bits resulting
from the calculation.

Convert from signed
to unsigned by

Saturating to minimum value at stage 4,
Replacing negative with absolute value

Choose the method of signed to unsigned conversion for
the results.

Notes to Table 3–1:

(1) When Guard bands are on, the MegaCore function never receives or sends data outside of the range specified by Min and Max.
(2) You can specify a higher precision output by increasing Bits per pixel per color plane and Move binary point right.
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 3: Parameter Settings 3–3
Color Space Converter (CSC)
Table 3–2. Color Space Converter Parameter Settings Tab, Operands Page

Parameter Value Description

Color model
conversion (1)

Computer B’G’R’ to CbCrY’:
SDTV, CbCrY’: SDTV to Computer
B’G’R’, Computer B’G’R’ to
CbCrY’: HDTV, CbCrY’: HDTV to
Computer B’G’R’, Studio B’G’R’ to
CbCrY’: SDTV, CbCrY’: SDTV to
Studio B’G’R’, Studio B’G’R’ to
CbCrY’: HDTV, CbCrY’: HDTV to
Studio B’G’R’, IQY' to Computer
B'G'R', Computer B'G'R' to IQY',
UVY' to Computer B'G'R'
Computer B'G'R' to UVY',
Custom

Specifies a predefined set of coefficients and summands to use for
color model conversion at compile time. Alternatively, you can select
Custom and create your own custom set by modifying the din_0,
din_1, and din_2 coefficients for dout_0, dout_1, and dout_2
separately.

The values are assigned in the order indicated by the conversion
name. For example, if you select Computer B’G’R’ to CbCrY’: SDTV,
then din_0 = B’, din_1 = G’, din_2 = R’, dout_0 = Cb, dout_1 = Cr, and
dout_2 = Y’.

Runtime
controlled On or Off Turn on to enable run-time control of the conversion values.

Coefficients
and
Summands
A0, B0, C0, S0
A1, B1, C1, S1
A2, B2, C2, S2

12 fixed-point values

Each coefficient or summand is represented by a white cell with a
purple cell underneath. The value in the white cell is the desired value,
and is editable. The value in the purple cell is the actual value,
determined by the fixed-point type specified. The purple cells are not
editable. You can create a custom coefficient and summand set by
specifying one fixed-point value for each entry.

You can paste custom coefficients into the table from a spreadsheet
(such as Microsoft Excel). Blank lines must be left in your input data
for the non-editable cells.

Coefficients:
Signed (2) On or Off Turn on to set the fixed point type used to store the constant

coefficients as having a sign bit.

Coefficients:
Integer
bits (2)

0–16, Default = 0 Specifies the number of integer bits for the fixed point type used to
store the constant coefficients.

Summands:
Signed (2) On or Off Turn on to set the fixed point type used to store the constant

summands as having a sign bit.

Summands:
Integer
bits (2)

0–22, Default = 8 Specifies the number of integer bits for the fixed point type used to
store the constant summands.

Coefficient and
summand
fraction
bits (2)

0–34, Default = 8 Specifies the number of fraction bits for the fixed point type used to
store the coefficients and summands.

Notes to Table 3–2:

(1) Editing the coefficient values automatically changes the Color model conversion value to Custom.
(2) Editing these values change the actual coefficients and summands and the results values on the General page. Signed coefficients allow

negative values; increasing the integer bits increases the magnitude range; and increasing the fraction bits increases the precision.
July 2010 Altera Corporation Video and Image Processing Suite User Guide

3–4 Chapter 3: Parameter Settings
Chroma Resampler
Chroma Resampler
Table 3–3 shows the Chroma Resampler MegaCore function parameters.

Gamma Corrector
Table 3–4 shows the Gamma Corrector MegaCore function parameters.

1 You program the actual gamma corrected intensity values at run time using the
Avalon-MM slave interface.

Table 3–3. Chroma Resampler Parameter Settings

Parameter Value Description

Maximum width 32–2600, Default = 256 Choose the maximum image width in pixels.

Maximum height 32–2600, Default = 256 Choose the maximum image height in pixels.

Bits per pixel per
color plane 4–20, Default = 8 Choose the number of bits per pixel (per color plane).

Color plane
configuration Sequence, Parallel

There must always be three color planes for this function but you can
choose whether the three color planes are transmitted in sequence or in
parallel.

Input Format (1) 4:4:4, 4:2:2, 4:2:0 Choose the format/sampling rate format for the input frames. Note that the
input and output formats must be different.

Output Format (1) 4:4:4, 4:2:2, 4:2:0 Choose the format/sampling rate format for the output frames. Note that
the input and output formats must be different.

Horizontal Filtering
Algorithm

Filtered,
Nearest Neighbor

Choose the algorithm to use in the horizontal direction when re-sampling
data to or from 4:4:4.

Luma adaptive On or Off Turn on to enable luma-adaptive mode. This mode looks at the luma
channel during interpolation and uses this to detect edges.

Note to Table 3–3:

(1) The input and output formats must be different. A warning is issued when the same values are selected for both.

Table 3–4. Gamma Corrector Parameter Settings

Parameter Value Description

Bits per pixel
per color plane 4–16, Default = 8 Choose the number of bits per pixel (per color plane).

Number of
color planes 1– 3 The number of color planes that are sent in sequence or parallel over one

data connection.

Color plane
transmission
format

Color planes in sequence,
Color planes in parallel

Specifies whether the specified number of color planes are transmitted in
sequence or in parallel. For example, a value of 3 planes in sequence for
R'G'B' R'G'B' R'G'B'.
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 3: Parameter Settings 3–5
2D FIR Filter
2D FIR Filter
Table 3–5 and Table 3–6 on page 3–6 show the 2D FIR Filter MegaCore function
parameters.

Table 3–5. 2D FIR Filter Parameter Settings Tab, General Page

Parameter Value Description

Maximum image
width 32–2600, Default = 640 Choose the maximum image width in pixels.

Number of color
planes in sequence 1–3

The number of color planes that are sent in sequence
over one data connection. For example, a value of 3 for
R'G'B' R'G'B' R'G'B'.

Input Data Type:
Bits per pixel per
color plane (3)

4–20, Default = 8 Choose the number of bits per pixel (per color plane).

Input Data Type:
Data type: Unsigned, Signed Choose whether input is unsigned or signed 2's

complement.

Input Data Type:
Guard bands On or Off Turn on to enable a defined input range.

Input Data Type:
Max 1,048,575 to -524,288, Default = 255 Set input range maximum value. (1)

Input Data Type:
Min 1,048,575 to -524,288, Default = 0 Set input range minimum value. (1)

Output Data Type:
Bits per pixel per
color plane (3)

4–20, Default = 8 Choose the number of bits per pixel (per color plane).

Output Data Type:
Data type Unsigned, Signed Choose whether output is unsigned or signed 2's

complement.

Output Data Type:
Guard bands On or Off Turn on to enable a defined output range.

Output Data Type:
Max 1,048,575 to -524,288, Default = 255 Set output range maximum value. (2)

Output Data Type:
Min 1048575 to -524288, Default = 0 Set output range minimum value. (2)

Move binary point
right (3) –16 to +16, Default = 0

Specify the number of places to move the binary point.
This can be useful if you require a wider range output on
an existing coefficient set.

Remove fraction
bits by

Round values - Half up,
Round values - Half even,
Truncate values to integer

Choose the method for discarding fractional bits
resulting from the FIR calculation.

Convert from signed
to unsigned by

Saturating to minimum value at stage 4,
Replacing negative with absolute value

Choose the method for signed to unsigned conversion of
the FIR results.

Notes to Table 3–5

(1) The maximum and minimum guard bands values specify a range in which the input should always fall. The 2D FIR filter behaves unexpectedly
for values outside this range.

(2) The output is constrained to fall in the specified range of maximum and minimum guard band values.
(3) You can specify a higher precision output by increasing Bits per pixel per color plane and Move binary point right.
July 2010 Altera Corporation Video and Image Processing Suite User Guide

3–6 Chapter 3: Parameter Settings
2D Median Filter
2D Median Filter
Table 3–7 shows the 2D Median Filter MegaCore function parameters.

Table 3–6. 2D FIR Filter Parameter Settings Tab, Coefficients Page

Parameter Value Description

Filter size (1) 3x3, 5x5, 7x7 Choose the size in pixels of the convolution kernel used in the filtering.

Runtime controlled On or Off Turn on to enable run-time control of the coefficient values.

Coefficient set (2)
Simple Smoothing,
Simple Sharpening,
Custom

You can choose a predefined set of simple smoothing or simple sharpening
coefficients which are used for color model convolution at compile time.
Alternatively, you can create your own custom set of coefficients by modifying
the coefficients in the matrix.

Enable symmetric
mode On or Off

When on, the 3×3 coefficient matrix must be symmetrical, which enables
optimization in the hardware reducing the number of multiplications required.
In this mode a limited number of matrix cells are editable and the remaining
values are automatically inferred. Symmetric mode is enabled for the
predefined coefficient sets but can be disabled when setting custom
coefficients. If you turn off this option while one of the predefined coefficient
sets is selected, its values are used as the defaults for a new custom set.

Coefficients (2) 9, 25, or 49 fixed-
point values

Each coefficient is represented by a white box with a purple box underneath.
The value in the white box is the desired coefficient value, and is editable. The
value in the purple box is the actual coefficient value as determined by the
coefficient fixed point type specified. The purple boxes are not editable. You
can create a custom set of coefficients by specifying one fixed-point value for
each entry in the convolution kernel. The matrix size depends on the selected
filter size.

Coefficient Precision:
Signed (3) On or Off Turn on if you want the fixed-point type that stores the coefficients to have a

sign bit.

Coefficient Precision:
Integer bits (3) 0–35, Default = 0 Specifies the number of integer bits for the fixed-point type used to store the

coefficients.

Coefficient Precision:
Fraction bits (3) 0–35, Default = 6 Specifies the number of fractional bits for the fixed point type used to store

the coefficients.

Notes to Table 3–6:

(1) The size of the coefficient grid changes to match the filter size when this option is changed.
(2) The values in the coefficient grid change when you select a different coefficient set.
(3) Editing these values change the actual coefficients and summands and the results values on the General page. Signed coefficients allow

negative values; increasing the integer bits increases the magnitude range; and increasing the fraction bits increases the precision.

Table 3–7. 2D Median Filter Filter Parameter Settings

Parameter Value Description

Image width 32–2600, Default = 640 Choose the required image width in pixels.

Image height 32–2600, Default = 480 Choose the required image height in pixels.

Bits per pixel per
color plane 4–20, Default = 8 Choose the number of bits per pixel (per color plane).

Number of color
planes in sequence 1–3 The number of color planes that are sent in sequence over one data

connection. For example, a value of 3 for R'G'B' R'G'B' R'G'B'.

Filter size 3x3, 5x5 Choose the size of kernel in pixels to take the median from.
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 3: Parameter Settings 3–7
Alpha Blending Mixer
Alpha Blending Mixer
Table 3–8 shows the Alpha Blending Mixer MegaCore function parameters.

Table 3–8. Alpha Blending Mixer Parameter Settings

Parameter Value Description

Maximum layer
width 32–2600, Default = 1,024

Choose the maximum image width for the layer background in pixels. No
layer width can be greater than the background layer width. The
maximum image width is the default width for all layers at start-up.

Maximum layer
height 32–2600, Default = 768

Choose the maximum image height for the layer background in pixels. No
layer height can be greater than the background layer height. The
maximum image height is the default height for all layers at start-up.

Bits per pixel per
color plane 4–20, Default = 8 Choose the number of bits per pixel (per color plane).

Number of color
planes in sequence 1–3 Choose the number of color planes that are sent in sequence over one

data connection. For example, a value of 3 for R'G'B' R'G'B' R'G'B'.

Number of color
planes in parallel 1–3 Choose the number of color planes in parallel.

Number of layers
being mixed 2–12

Choose the number of image layers to overlay. Higher number layers are
mixed on top of lower layer numbers. The background layer is always
layer 0.

Alpha blending On or Off

When on, alpha data sink ports are generated for each layer (including an
unused port alpha_in_0 for the background layer). This requires a
stream of alpha values; one value for each pixel. When off, no alpha data
sink ports are generated, and the image layers are fully opaque.

Alpha bits per pixel 2, 4, 8 Choose the number of bits used to represent the alpha coefficient.
July 2010 Altera Corporation Video and Image Processing Suite User Guide

3–8 Chapter 3: Parameter Settings
Scaler
Scaler
Table 3–9, Table 3–10, and Table 3–11 on page 3–9 show the Scaler MegaCore function
parameters.

Table 3–9. Scaler Parameter Settings Tab, Resolution Page

Parameter Value Description

Run-time control of
image size On or Off

Turn on to enable run-time control of the image size. When on, the
input and output size parameters control the maximum values.
When off, the Scaler does not respond to changes of resolution in
control packets.

Input image width 32–2600, Default = 1,024 Choose the required input width in pixels.

Input image height 32–2600, Default = 768 Choose the required input height in pixels.

Output image width 32–2600, Default = 640 Choose the required output width in pixels.

Output image height 32–2600, Default = 480 Choose the required output height in pixels.

Bits per pixel per color
plane 4–20, Default = 8 Choose the number of bits per pixel (per color plane).

Number of color planes 1–3, Default = 3
The number of color planes that are sent over one data
connection. For example, a value of 3 for R'G'B' R'G'B' R'G'B' in
serial.

Color planes transmission
format Sequence, Parallel The transmission mode used for the specified number of color

planes.

Table 3–10. Scaler Parameter Settings Tab, Algorithm and Precision Page (Part 1 of 2)

Parameter Value Description

Scaling Algorithm
Nearest Neighbor,
Bilinear, Bicubic,
Polyphase

Choose the scaling algorithm. For more information about these options,
refer to pages 5–13 to 5–14.

Number of vertical
taps (1) 3–16, Default = 4 Specify the number of vertical taps.

Number of vertical phases 2, 4, 8, 16, 32,
64, 128, 256 Specify the number of vertical phases.

Number of horizontal
taps (1) 3–16, Default = 4 Specify the number of horizontal taps.

Number of horizontal
phases

2, 4, 8, 16, 32,
64, 128, 256 Specify the number of horizontal phases.

Vertical Coefficient
Precision: Signed On or Off Turn on if you want the fixed-point type that stores the vertical coefficients

to have a sign bit.

Vertical Coefficient
Precision: Integer bits: 0–15, Default = 1 Specifies the number of integer bits for the fixed-point type used to store

the vertical coefficients.

Vertical Coefficient
Precision: Fraction bits: 3–15, Default = 7 Specifies the number of fractional bits for the fixed point type used to

store the vertical coefficients.

Number of bits to preserve
between vertical and
horizontal filtering (1)

3–32, Default = 9 Specifies the number of bits to preserve between vertical and horizontal
filtering.

Horizontal Coefficient
Precision: Signed On or Off Turn on if you want the fixed-point type that stores the horizontal

coefficients to have a sign bit.
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 3: Parameter Settings 3–9
Scaler
You can create custom coefficient data using third-party tools such as Microsoft Excel
or the MATLAB Array Editor. To do so, click Preview coefficients under Vertical
Coefficient Data and Horizontal Coefficient Data, copy the data from the predefined
coefficient spreadsheet, edit the data with your third-party tool, delete the Phase
column, and store the data in the Coeff columns as a .csv file. Then in the MegaWizard
interface, select Custom from the Filter function list, click Browse, load the .csv file,
and click Preview coefficients to verify the data.

Horizontal Coefficient
Precision: Integer bits: 0–15, Default = 1 Specifies the number of integer bits for the fixed-point type used to store

the horizontal coefficients.

Horizontal Coefficient
Precision: Fraction bits: 0–15, Default = 7 Specifies the number of fractional bits for the fixed point type used to

store the horizontal coefficients.

Notes to Table 3–10:

(1) These parameters determine the number and size of the DSP blocks. For example, with four vertical and four horizontal taps and nine bits
preserved between vertical and horizontal filtering, the scaler uses a total of eight 9×9 DSP blocks.

Table 3–10. Scaler Parameter Settings Tab, Algorithm and Precision Page (Part 2 of 2)

Parameter Value Description

Table 3–11. Scaler Parameter Settings Tab, Coefficients Page

Parameter Value Description

Load coefficient data at
runtime On or Off Turn on to load the coefficient data at runtime.

Share horizontal / vertical
coefficients On or Off

Turn on to map horizontal and vertical coefficients to the same
memory. When on and Load coefficient data at runtime is also
on, writes to the vertical coefficients are ignored. (The choice of
read bank remains independent for horizontal and vertical
coefficients.)

Vertical Coefficient Data:
Memory banks 1–6, Default = 2 Choose the number of coefficient banks to enable double-

buffering, fast coefficient swapping or direct writes.

Vertical Coefficient Data:
Filter function

Lanczos 1–12, or Custom,
Default = Lanczos 2

You can choose from 12 pre-defined Lanczos functions or use
the coefficients saved in a custom coefficients file.

Vertical Coefficient Data:
Custom coefficient file user specified

When a custom function is selected, you can browse for a
comma-separated value file containing custom coefficients. Use
the Preview coefficients button to view the current coefficients
in a preview window.

Vertical Coefficient Data:
Symmetric On or Off

Turn on to save coefficient memory by using symmetric
coefficients. When on and Load coefficient data at runtime is
also on, coefficient writes beyond phases 2 and 1 are ignored.

Horizontal Coefficient Data:
Memory banks 1–6, Default = 2 Choose the number of coefficient banks to enable double-

buffering, fast coefficient swapping or direct writes.

Horizontal Coefficient Data:
Filter function

Lanczos 1–12, or Custom,
Default = Lanczos 2

You can choose from 12 pre-defined Lanczos functions or use
the coefficients saved in a custom coefficients file.

Horizontal Coefficient Data:
Custom coefficient file user specified

When a custom function is selected, you can browse for a
comma-separated value file containing custom coefficients. Use
the Preview coefficients button to view the current coefficients
in a preview window.

Horizontal Coefficient Data:
Symmetric On or Off

Turn on to save coefficient memory by using symmetric
coefficients. When on and Load coefficient data at runtime is
also on, coefficient writes beyond phases 2 and 1 are ignored.
July 2010 Altera Corporation Video and Image Processing Suite User Guide

3–10 Chapter 3: Parameter Settings
Clipper
1 When editing the data, each row of coefficients must sum to the same value.
Refer to “Choosing and Loading Coefficients” on page 5–17.

Clipper
Table 3–12 shows the Clipper MegaCore function parameters.

Table 3–12. Clipper Parameter Settings

Parameter Value Description

Maximum width 32 to input image width,
Default = 1,024

Specify the maximum width of the clipping rectangle for the input field
(progressive or interlaced).

Maximum height 32 to input image height,
Default = 768

Specify the maximum height of the clipping rectangle for the input field
(progressive or interlaced).

Bits per pixel per
color plane 4–20, Default = 8 Choose the number of bits per pixel (per color plane).

Number of color
planes in sequence 1–3 Choose the number of color planes that are sent in sequence over one

data connection. For example, a value of 3 for R'G'B' R'G'B' R'G'B'.

Number of color
planes in parallel 1–3 Choose the number of color planes in parallel.

Include Avalon-MM
interface On or Off Turn on if you want to specify clipping offsets using the Avalon-MM

interface.

Clipping method Offsets, Rectangle Choose whether to specify the clipping area as offsets from the edge of
the input area or as a fixed rectangle.

Left offset positive integer, Default = 10 Specify the x coordinate for the left edge of the clipping rectangle. 0 is
the left edge of the input area. (1)

Right offset positive integer, Default = 10 Specify the x coordinate for the right edge of the clipping rectangle. 0
is the right edge of the input area. (1)

Width positive integer, Default = 10 Specify the width of the clipping rectangle.

Top offset positive integer, Default = 10 Specify the y coordinate for the top edge of the clipping rectangle. 0 is
the top edge of the input area. (2)

Bottom offset positive integer, Default = 10 Specify the y coordinate for the bottom edge of the clipping rectangle.
0 is the bottom edge of the input area. (2)

Height positive integer, Default = 10 Specify the height of the clipping rectangle.

Notes to Table 3–12:

(1) The left and right offset values must be less than or equal to the input image width.
(2) The top and bottom offset values must be less than or equal to the input image height.
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 3: Parameter Settings 3–11
Deinterlacer
Deinterlacer
Table 3–13 shows the Deinterlacer MegaCore function parameters.

Table 3–13. Deinterlacer Parameter Settings (Part 1 of 3)

Parameter Value Description

Maximum image width 32–2600, Default = 640 Choose the maximum frame width in pixels. The maximum frame
width is the default width at start-up.

Maximum image
height (7) 32–2600, Default = 480

Choose the maximum progressive frame height in pixels. The
maximum frame height is the default progressive height at start-
up.

Bits per pixel per color
plane 4–20, Default = 8 Choose the number of bits per pixel (per color plane).

Number of color planes
in sequence 1–3

Choose the number of color planes that are sent in sequence over
one data connection. For example, a value of 3 for R'G'B' R'G'B'
R'G'B'.

Number of color planes
in parallel 1–3 Choose the number of color planes in parallel.

Default initial field F0, F1 Choose a default type for the initial field. The default value is not
used if the first field is preceded by an Avalon-ST Control packet.

Deinterlacing
Method (1) (8)

Bob - Scanline Duplication,
Bob - Scanline Interpolation,
Weave, Motion Adaptive

Refer to “Deinterlacing Methods” on page 5–22.

Frame buffering
mode (1), (3), (4), (5)

No buffering,
Double buffering,
Triple buffering with rate
conversion

Specifies whether external frame buffers are used. In no buffering
mode, data is piped directly from input to output without using
external memory. This is possible only with the bob method.
Double-buffering routes data via a pair of buffers in external
memory. This is required by the weave and motion-adaptive
methods, and can ease throughput issues for the bob method.
Triple-buffering uses three buffers in external memory and has
the advantage over double-buffering that the Deinterlacer can
drop or repeat frames, to perform simple frame rate conversion.

Output frame rate (9)

As input frame rate
(F0 synchronized),
As input frame rate
(F1 synchronized),
As input field rate

Specifies whether to produce a frame out for every field which is
input, or a frame output for every frame (pair of fields) input.
Each deinterlacing method is defined in terms of its processing of
the current field and some number of preceding fields. In the case
where a frame is produced only for every two input fields, the
current field is either always an F1 field or always an F0 field.

Passthrough mode On or Off Turn on to propagate progressive frames unchanged. When off,
the progressive frames are discarded.

Run-time control for
locked frame rate
conversion (2), (6)

On or Off Turn on to add an Avalon-MM slave interface that synchronizes
the input and output frame rates.

4:2:2 support for motion
adaptive algorithm (2) On or Off

Turn on to avoid color artefacts when processing 4:2:2 Y’CbCr
data when the Motion Adaptive deinterlacing method is selected.
This option cannot be turned on if you are not using either two
channels in sequence or two channels in parallel.
July 2010 Altera Corporation Video and Image Processing Suite User Guide

3–12 Chapter 3: Parameter Settings
Deinterlacer
Motion bleed On or Off

Turn on to compare the motion value with the corresponding
motion value for the same location in the previous frame. If it is
greater, the new value is kept, but if the new value is less than the
stored value, the motion value used is the mean of the two values.
This reduces unpleasant flickering artefacts but increases the
memory usage and memory bandwidth requirements. (2)

Run-time control of the
motion-adaptive blending On or Off

Turn on to add an Avalon-MM slave interface that controls the
behavior of the motion adaptive algorithm at run time. The pixel-
based motion value computed by the algorithm can be replaced
by a user selected frame-based motion value that varies between
the two extremes of being entirely bob or entirely weave. (4), (6)

Number of packets
buffered per field 1–32 Specify the number of packets that can be buffered with each

field. Older packets are discarded first in case of an overflow. (5)

Maximum packet length 10–1,024

Choose the maximum packet length as a number of symbols. The
minimum value is 10 because this is the size of an Avalon-ST
control packet (header included). Extra samples are discarded if
packets are larger than allowed. (5)

Use separate clocks for
the Avalon-MM master
interfaces

On or Off

Turn on to add a separate clock signal for the Avalon-MM master
interfaces so that they can run at a different speed to the Avalon-
ST processing. This decouples the memory speed from the speed
of the data path and is sometimes necessary to reach
performance target.

Avalon-MM master ports
width (3) 16, 32, 64,128, 256

Specifies the width of the Avalon-MM ports used to access
external memory when double-buffering or triple-buffering is
used.

Read-only master(s)
interface FIFO depth 16–1,024, Default = 64 Choose the FIFO depth of the read-only Avalon-MM interface.

Read-only master(s)
interface burst target 2–256, Default = 32 Choose the burst target for the read-only Avalon-MM interface.

Write-only master(s)
interface FIFO depth 16–1,024, Default = 64 Choose the FIFO depth of the write-only Avalon-MM interface.

Write-only master(s)
interface burst target 8–256, Default = 32 Choose the burst target for the write-only Avalon-MM interface.

Base address of frame
buffers (3) (10)

Any 32-bit value,
Default = 0x00000000

Hexadecimal address of the frame buffers in external memory
when buffering is used.

Table 3–13. Deinterlacer Parameter Settings (Part 2 of 3)

Parameter Value Description
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 3: Parameter Settings 3–13
Interlacer
Interlacer
Table 3–13 shows the Interlacer MegaCore function parameters.

Align read/write bursts
with burst boundaries (3) On or Off Turn on to avoid initiating read and write bursts at a position that

would cause the crossing of a memory row boundary.

Notes to Table 3–13:

(1) Either double or triple-buffering mode must be selected before you can select the weave or motion-adaptive deinterlacing methods.
(2) These options are available only when you select Motion Adaptive as the deinterlacing method.
(3) The options to align read/write bursts on burst boundaries, specify the Avalon-MM master ports width, and the base address for the frame

buffers are available only when you select double or triple-buffering.
(4) The option to synchronize input and output frame rates is only available when double-buffering mode is selected.
(5) The options to control the buffering of non-image data packets are available when you select double or triple-buffering.
(6) You cannot enable both run-time control interfaces at the same time.
(7) This MegaCore function does not support interlaced streams where fields are not of the same size (eg, for NTSC, F0 has 244 lines and F1 has

243 lines). Altera recommends that you use the clipper MegaCore function to crop the extra line in F0.
(8) The weave and motion-adaptive algorithms stitch together F1 fields with the F0 fields that precede rather than follow them.
(9) NTSC video transmits 60 interlaced fields per second(30 frames per second). Selecting an Output frame rate of As input frame rate ensures

that the output is 30 frames per second.
(10) The total memory required at the specified base address is displayed under the base address.

Table 3–13. Deinterlacer Parameter Settings (Part 3 of 3)

Parameter Value Description

Table 3–14. Interlacer Parameter Settings

Parameter Value Description

Maximum image width 32–2600, Default = 640 Specifies the maximum frame width in pixels. The maximum
frame width is the default width at start up.

Maximum image height 32–2600, Default = 480
Specifies the maximum progressive frame height in pixels. The
maximum frame height is the default progressive height at start
up.

Bits per pixel per color
plane 4–20, Default = 8 Specifies the number of bits per color plane.

Number of color planes
in sequence 1–3

Specifies the number of color planes that are sent in sequence
over one data connection. For example, a value of 3 for R'G'B'
R'G'B' R'G'B'.

Number of color planes
in parallel 1–3 Specifies the number of color planes sent in parallel.

initial field F0, F1 Specifies the type for the first field output after reset or after a
resolution change.

Pass-through mode On or Off Turn on to propagate interlaced fields unchanged. Turn off to
discard interlaced input.

Run-time control On or Off Turn on to enable run-time control.

Control packets override
field selection On or Off

Turn on when the content of the control packet specifies which
lines to drop when converting a progressive frame into an
interlaced field.
July 2010 Altera Corporation Video and Image Processing Suite User Guide

3–14 Chapter 3: Parameter Settings
Frame Reader
Frame Reader
Table 3–15 shows the Frame Reader parameters.

Frame Buffer
Table 3–16 shows the Frame Buffer parameters.

Table 3–15. Frame Reader Parameter Settings

Parameter Value Description

Bits per pixel per color plane 4–16, Default = 8 The number of bits used per pixel, per color plane

Number of color planes in parallel 1–4, Default = 3 The number color planes transmitted in parallel

Number of color planes in sequence 1–3, Default = 3 The maximum number of color planes transmitted in
sequence

Maximum image width 32–2600, Default =
640 The maximum width of images / video frames

Maximum image height 32–2600, Default =
480 The maximum height of images / video frames

Master port width 16–256, Default = 256 The width in bits of the master port

Read master FIFO depth 1–64, Default = 64 The depth of the read master FIFO

Read master FIFO burst target 2–256, Default = 32 The target burst size of the read master

Use separate clock for the Avalon-
MM master interface On or Off Use separate clock for the Avalon-MM master interface

Table 3–16. Frame Buffer Parameter Settings (Part 1 of 2)

Parameter Value Description

Maximum image width 32–2600,
Default = 640 Specify the maximum frame width.

Maximum image height 32–2600,
Default = 480

Specify the maximum frame height. In general, this value
should be set to the full height of a progressive frame.
However, it can be set to the height of an interlaced field for
double-buffering on a field-by-field basis when the support
for interlaced inputs has been turned off.

Bits per pixel per color plane 4–20, Default = 8 Choose the number of bits per pixel (per color plane).

Number of color planes in sequence 1–3 Choose the number of color planes in sequence.

Number of color planes in parallel 1–3 Choose the number of color planes in parallel.

Frame dropping On or Off Turn on to allow frame dropping.

Frame repetition On or Off Turn on to allow frame repetition.

Drop invalid fields/frames On or Off
Turn on to drop image data packets whose length is not
compatible with the dimensions declared in the last control
packet.

Run-time control for the writer thread On or Off Turn on to enable run-time control for the write interfaces.

Run-time control for the reader
thread On or Off Turn on to enable run-time control for the read interfaces.

Support for locked frame rate
conversion (1), (2) On or Off Turn on to synchronize the input and output frame rates

through an Avalon-MM slave interface.
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 3: Parameter Settings 3–15
Frame Buffer
Support for interlaced streams On or Off

Turn on to support consistent dropping and repeating of
fields in an interlaced video stream. This option should not
be turned on for double-buffering of an interlaced input
stream on a field-by-field basis.

Number of packets buffered per
frame (3) 0–32

Specify the maximum number of non-image, non-control,
Avalon-ST Video packets that can be buffered with each
frame. Older packets are discarded first in case of an
overflow.

Maximum packet length 10–1,024

Specify the maximum packet length as a number of
symbols. The minimum value is 10 because this is the size
of an Avalon-ST control packet (header included). Extra
samples are discarded if packets are larger than allowed.

Use separate clocks for the Avalon-
MM master interfaces On or Off

Turn on to add a separate clock signal for the Avalon-MM
master interfaces so that they can run at a different speed
to the Avalon-ST processing. This decouples the memory
speed from the speed of the data path and is sometimes
necessary to reach performance target.

External memory port width 16, 32, 64, 128, 256 Choose the width of the external memory port.

Write-only master interface FIFO
depth

16–1,024,
Default = 64

Choose the FIFO depth of the write-only Avalon-MM
interface.

Write-only master interface burst
target 2–256, Default = 32 Choose the burst target for the write-only Avalon-MM

interface.

Read-only master interface FIFO
depth

16–1,024,
Default = 64

Choose the FIFO depth of the read-only Avalon-MM
interface.

Read-only master interface burst
target 2–256, Default = 32 Choose the burst target for the read-only Avalon-MM

interface.

Base address of frame buffers (4) Any 32-bit value,
Default = 0x00000000

Hexadecimal address of the frame buffers in external
memory.

Align read/write bursts with burst
boundaries On or Off

Turn on to avoid initiating read and write bursts at a
position that would cause the crossing of a memory row
boundary.

Notes to Table 3–16:

(1) Locked frame rate conversion cannot be turned on until dropping and repeating are allowed.
(2) Locked frame rate conversion cannot be turned on if the run-time control interface for the writer component has not been enabled.
(3) The Maximum packet length option is not available when the Number of packets buffered per frame is set to 0.
(4) The number of frame buffers and the total memory required at the specified base address is displayed under the base address.

Table 3–16. Frame Buffer Parameter Settings (Part 2 of 2)

Parameter Value Description
July 2010 Altera Corporation Video and Image Processing Suite User Guide

3–16 Chapter 3: Parameter Settings
Clocked Video Input
Clocked Video Input
Table 3–17 shows the Clocked Video Input MegaCore function parameters.

Table 3–17. Clocked Video Input Parameter Settings

Parameter Value Description

Select preset to load

DVI 1080p60,
SDI 1080p60,
SDI 1080i60,
PAL, NTSC

You can choose from a list of preset conversions or use the other fields in
the dialog box to set up custom parameter values. If you click Load values
into controls the dialog box is initialized with values for the selected preset
conversion.

Bits per pixel per color
plane 4–20, Default = 8 Choose the number of bits per pixel (per color plane).

Number of color planes 1–4, Default = 3 Choose the number of color planes.

Color plane transmission
format Sequence, Parallel Choose whether the color planes are transmitted in sequence or in

parallel.

Field order
Field 0 first,
Field 1 first,
Any field first,

Choose the field to synchronize to first when starting or stopping the
output.

Interlaced or progressive Progressive,
Interlaced

Choose the format to be used when no format can be automatically
detected.

Width 32–65,536,
Default = 1,920

Choose the image width to be used when no format can be automatically
detected.

Height, Frame / Field 0 32–65,536,
Default = 1,080

Choose the image height to be used when no format can be automatically
detected.

Height, Field 1 32–65,536, Default
= 1,080

Choose the image height for interlaced field 1when no format can be
automatically detected.

Sync Signals Embedded in video,
On separate wires

Choose whether the synchronization signal is embedded in the video
stream or provided on a separate wire.

Allow color planes in
sequence input On or Off

Choose whether run-time switching is allowed between sequential and
parallel color plane transmission formats. The format is controlled by the
vid_hd_sdn signal.

Generate
synchronization outputs No, Yes, Only

Specifies whether the Avalon-ST output and synchronization outputs (sof,
sof_locked, refclk_div) are generated:

■ No—Only Avalon-ST Video output

■ Yes—Avalon-ST Video output and synchronization outputs

■ Only—Only synchronization outputs

Width of bus “vid_std” 1 - 16 The width, in bits, of the vid_std bus.

Extract ancillary packets On or Off Specifies whether ancillary packets are extracted in embedded sync mode.

Pixel FIFO size 32–(memory limit),
Default = 1,920

Choose the required FIFO depth in pixels (limited by the available on-chip
memory).

Video in and out use the
same clock On or Off Turn on if you want to use the same signal for the input and output video

image stream clocks.

Use control port On or Off Turn on to use the optional stop/go control port.
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 3: Parameter Settings 3–17
Clocked Video Output
Clocked Video Output
Table 3–18 shows the Clocked Video Output MegaCore function parameters.

Table 3–18. Clocked Video Output Parameter Settings (Part 1 of 2)

Parameter Value Description

Select preset to load

DVI 1080p60,
SDI 1080p60,
SDI 1080i60,
PAL, NTSC

You can choose from a list of preset conversions or use the other fields in
the dialog box to set up custom parameter values. If you click Load values
into controls the dialog box is initialized with values for the selected preset
conversion.

Image width / Active
pixels

32–65,536,
Default = 1,920 Specify the image width by choosing the number of active pixels.

Image height / Active
lines

32–65,536,
Default = 1,080 Specify the image height by choosing the number of active lines.

Bits per pixel per color
plane 4–20, Default = 8 Choose the number of bits per pixel (per color plane).

Number of color planes 1–4, Default = 3 Choose the number of color planes.

Color plane transmission
format Sequence, Parallel Choose whether the color planes are transmitted in sequence or in parallel.

Allow output of color
planes in sequence On or Off

Choose whether run-time switching is allowed between sequential
formats, such as NTSC, and parallel color plane transmission formats,
such as 1080p. The format is controlled by the ModeXControl registers.
See the Avalon-ST Video Protocol section under Interfaces for a
description of the difference between sequential and parallel color plane
transmission formats.

Interlaced video On or Off Turn on if you want to use interlaced video. If on, you can set the additional
Interlaced and Field 0 Parameters.

Sync signals Embedded in video,
On separate wires

Choose whether the synchronization signal is embedded in the video
stream or provided on a separate wire. If you choose Embedded in video,
you can set the active picture line, horizontal blanking, and vertical
blanking values. If you choose On separate wires, you can set horizontal
and vertical values for sync, front porch, and back porch.

Active picture line 0–65,536,
Default = 0 Choose the start of active picture line for Frame.

Frame / Field 1: Ancillary
packet insertion line

0–65,536,
Default = 0 Choose the line where ancillary packet insertion starts.

Frame / Field 1:
Horizontal blanking

0–65,536,
Default = 0

Choose the size of the horizontal blanking period in pixels for Frame/Field
1.

Frame / Field 1: Vertical
blanking

0–65,536,
Default = 0 Choose the size of the vertical blanking period in pixels for Frame/Field 1.

Frame / Field 1:
Horizontal sync

1–65,536,
Default = 60

Choose the size of the horizontal synchronization period in pixels for
Frame/Field 1.

Frame / Field 1:
Horizontal front porch

1–65,536,
Default = 20

Choose the size of the horizontal front porch period in pixels for
Frame/Field 1.

Frame / Field 1:
Horizontal back porch

1–65,536,
Default = 192

Choose the size of the horizontal back porch period in pixels for
Frame/Field 1.

Frame / Field 1:
Vertical sync

0–65,536,

Default = 5
Choose the number of lines in the vertical synchronization period for
Frame/Field 1.
July 2010 Altera Corporation Video and Image Processing Suite User Guide

3–18 Chapter 3: Parameter Settings
Clocked Video Output
Frame / Field 1:
Vertical front porch

0–65,536,
Default = 4

Choose the number of lines in the vertical front porch period for
Frame/Field 1.

Frame / Field 1:
Vertical back porch

0–65,536,
Default = 36

Choose the number of lines in the vertical back porch period for
Frame/Field 1.

Interlaced and Field 0:
F rising edge line

0–65,536,
Default = 0

Choose the line when the rising edge of the field bit occurs for Interlaced
and Field 0.

Interlaced and Field 0:
F falling edge line

0–65,536,
Default = 18

Choose the line when the rising edge of the vertical blanking bit for Field 0
occurs for Interlaced and Field 0.

Interlaced and Field 0:
Vertical blanking rising
edge line

0–65,536,
Default = 0

Choose the line when the vertical blanking rising edge occurs for
Interlaced and Field 0.

Interlaced and Field 0:
Ancillary packet
insertion line

0–65,536,
Default = 0 Choose the line where ancillary packet insertion starts.

Interlaced and Field 0:
Vertical blanking

0–65,536,
Default = 0

Choose the number of lines in the vertical front porch period for Interlaced
and Field 0.

Interlaced and Field 0:
Vertical sync

0–65,536,
Default = 0

Choose the number of lines in the vertical back porch period for Interlaced
and Field 0.

Interlaced and Field 0:
Vertical front porch

0–65,536,
Default = 0

Choose the number of lines in the vertical front porch period for Interlaced
and Field 0.

Interlaced and Field 0:
Vertical back porch

0–65,536,
Default = 0

Choose the number of lines in the vertical back porch period for Interlaced
and Field 0.

Pixel FIFO size 32–(memory limit),
Default = 1,920

Choose the required FIFO depth in pixels (limited by the available on-chip
memory).

FIFO level at which to
start output

0–(memory limit),
Default = 0

Choose the fill level that the FIFO must have reached before the output
video starts.

Video in and out use the
same clock On or Off Turn on if you want to use the same signal for the input and output video

image stream clocks.

Use control port On or Off Turn on to use the optional Avalon-MM control port.

Runtime configurable
video modes (1) 1–14, Default = 1 Choose the number of runtime configurable video output modes that are

required when you are using the Avalon-MM control port.

Accept synchronization
outputs No, Yes

Specifies whether the synchronization outputs are used:

■ No - Not used

■ Yes - Synchronization outputs, from the Clocked Video Input MegaCore
function, (sof, sof_locked) are used

Width of “vid_std” 0–16 Specifies the width of the vid_std bus.

Notes to Table 3–18:

(1) This parameter is available only when Use control port is on.

Table 3–18. Clocked Video Output Parameter Settings (Part 2 of 2)

Parameter Value Description
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 3: Parameter Settings 3–19
Color Plane Sequencer
Color Plane Sequencer
Table 3–19 shows the Color Plane Sequencer MegaCore function parameters.

Test Pattern Generator
Table 3–20 shows the Test Pattern Generator MegaCore function parameters.

Table 3–19. Color Plane Sequencer Parameter Settings

Parameter Value Description

Bits per pixel per color plane 4–20, Default = 8 Choose the number of bits per pixel (per color plane).

Two pixels per port (1) On or Off Turn on to enable two pixels on each port.

Color planes in parallel (din0) 1–3 Choose the number of color planes in parallel for input port din0.

Color planes in sequence (din0) 1–4 Choose the number of color planes in sequence for input port din0.

Port enabled (din1) On or Off Turn on to enable input port din0.

Color planes in parallel (din1) 1–3 Choose the number of color planes in parallel for input port din1.

Color planes in sequence (din1) 1–4 Choose the number of color planes in sequence for input port din1.

Port enabled (dout0) On or Off Turn on to enable output port dout0.

Source non-image packets
from port (dout0)

din0, din1, din0
and din1

Choose the source port(s) that are enabled for non-image packets for
output port dout0.

Halve control packet width
(dout0) (2) (3) On or Off Turn on to halve the Avalon-ST Video control packet width for output

port dout0.

Color planes in parallel (dout0) 1–3 Choose the number of color planes in parallel for output port dout0.

Color planes in sequence
(dout0) 1–4 Choose the number of color planes in sequence for output port dout0.

Port enabled (dout1) On or Off Turn on to enable output port dout1.

Source non-image packets
from port (dout1)

din0, din1, din0
and din1

Choose the source port used for non-image packets for output port
dout1.

Halve control packet width
(dout1) On or Off Turn on to halve the Avalon-ST Video control packet width for output

port dout1. (1)

Color planes in parallel (dout1) 1–3 Choose the number of color planes in parallel for output port dout1.

Color planes in sequence
(dout1) 1–4 Choose the number of color planes in sequence for output port dout1.

Note to Table 3–19:

(1) Turn on when treating Cb and Cr separately because two pixels worth of data is required. Alternatively, you can turn this parameter off and use
channel names C, Y instead of Cb, Y, Cr, Y.

(2) This option can be useful if you want to split a subsampled color plane from a fully sampled color plane. The subsampled color plane can then
be processed by other functions as if fully sampled.

(3) Turn on when stream contains two subsampled channels. For other MegaCore functions to be able to treat these channels as two fully sampled
channels in sequence, the control packet width must be halved.

Table 3–20. Test Pattern Generator Parameter Settings (Part 1 of 2)

Parameter Value Description

Run-time control
of image size On or Off Turn on to enable run-time control of the image size. When on, the output

size parameters control the maximum values.

Maximum image
width

32–2600,
Default = 640 Choose the required output width in pixels.
July 2010 Altera Corporation Video and Image Processing Suite User Guide

3–20 Chapter 3: Parameter Settings
Control Synchronizer
Control Synchronizer
Table 3–21 shows the Control Synchronizer MegaCore function parameters.

Maximum image
height

32–2600,
Default = 480

Choose the required output height in pixels. This value should be the height
of the full progressive frame when outputting interlaced data.

Bits per pixel per
color plane

4–20,
Default = 8 Choose the number of bits per pixel (per color plane).

Color space RGB or YCbCr Choose whether to use an R’G’B’ or Y’CbCr color space.

Output format 4:4:4, 4:2:2, 4:2:0 Choose the format/sampling rate format for the output frames.

Color planes
transmission
format

Sequence, Parallel This function always outputs three color planes but you can choose
whether they are transmitted in sequence or in parallel.

Interlacing
Progressive output,
Interlaced output (F0 first),
Interlaced output (F1 first)

Specifies whether to produce a progressive or an interlaced output stream.

Pattern Color bars, Uniform
background Choose the standard color bar or a uniform background.

Uniform values 0–255, Default = 128 When pattern is uniform background, you can specify the individual R’G’B'
or Y’ Cb Cr values depending on the currently selected color space.

Table 3–20. Test Pattern Generator Parameter Settings (Part 2 of 2)

Parameter Value Description

Table 3–21. Control Synchronizer Parameter Settings

Parameter Value Description

Bits per pixel per
color plane 4–16, Default = 8 The number of bits used per pixel, per color plane.

Number of color
planes 1–4, Default = 3

The number of color planes that are sent over one data
connection. For example, a value of 3 for R'G'B' R'G'B' R'G'B' in
serial.

Color planes are in
parallel On or Off Color planes are transmitted in parallel or in series.

Trigger on width
change On or Off Trigger compares control packet width values.

Trigger on height
change On or Off Trigger compares control packet height values.

Trigger on start of
video data packet On or Off Trigger activates on each start of video data packet.

Require trigger reset
via control port On or Off Once triggered, the trigger is disabled and must be re-enabled

via the control port.

Maximum number of
control data entries 1–10, Default = 3 Maximum number of control data entries that can be written to

other cores.
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 3: Parameter Settings 3–21
Switch
Switch
Table 3–22 shows the Switch MegaCore function parameters.

Table 3–22. Switch Parameter Settings

Parameter Value Description

Bits per pixel per color plane 4–20, Default = 8 Choose the number of bits per pixel (per color plane).

Number of color planes 1–3, Default = 3 Choose the number of color planes.

Color planes are in parallel On or Off Turn on to set colors planes in parallel, turn off to set colors planes in
sequence.

Number of input ports 1–12, Default = 2 Number of input ports (din and alpha_in).

Number of output ports 1–12, Default = 2 Number of output ports (dout and alpha_out).

Alpha enabled On or Off Turn on to enable the alpha ports.

Bits per pixel representing
the alpha coefficient 2, 4, or 8 Choose the number of bits used to represent the alpha coefficient.
July 2010 Altera Corporation Video and Image Processing Suite User Guide

3–22 Chapter 3: Parameter Settings
Switch
Video and Image Processing Suite User Guide July 2010 Altera Corporation

July 2010 Altera Corporation
4. Interfaces
Interface Types
The MegaCore functions in the Video and Image Processing Suite use standard
interfaces for data input and output, control input, and access to external memory.
These standard interfaces ensure that video systems can be quickly and easily
assembled by connecting MegaCore functions together.

The functions use the following types of interfaces:

■ Avalon-ST interface—a streaming interface that supports backpressure. The
Avalon-ST Video protocol transmits video and configuration data. This interface
type allows the simple creation of video processing data paths, where MegaCore
functions can be connected together to perform a series of video processing
functions.

■ Avalon-MM slave interface—provides a means to monitor and control the
properties of the MegaCore functions.

■ Avalon-MM master interface—when the MegaCore functions require access to a
slave interface, for example an external memory controller.

f For more information about these interface types, refer to the Avalon Interface
Specifications.

Figure 4–1 shows an example of video processing data paths using the Avalon-ST and
Avalon-MM interfaces. This abstracted view is similar to that provided in the SOPC
Builder tool, where interface wires are grouped together as single connections.

The "Clocked Video" MegaCore functions in Figure 4–1 also have external interfaces
that support clocked video standards. These MegaCore functions can connect
between the function’s Avalon-ST interfaces and functions using clocked video
standards such as BT.656.

Figure 4–1. Abstracted Block Diagram Showing Avalon-ST and Avalon-MM Connections

Clocked Video
Input MegaCore

Function

Deinterlacer
MegaCore
Function

High Performance
 DDR 2 Memory

Controller MegaCore
Function

Nios II
Processor

Avalon ST Connection

Avalon MM Master to Slave Connection

Scaler
MegaCore
Function

Clocked Video
Output MegaCore

Function
Video and Image Processing Suite User Guide

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

4–2 Chapter 4: Interfaces
Avalon-ST Video Protocol
f For information about the supported clocked video interfaces, refer to the functional
description of the “Clocked Video Input” on page 5–35, and “Clocked Video Output”
on page 5–43.

Avalon-ST Video Protocol
The MegaCore functions in the Video and Image Processing Suite use the Avalon-ST
Video protocol. The Avalon-ST Video protocol is a packet-oriented way to send video
and control data over Avalon-ST connections. Using the Avalon-ST Video protocol
allows the construction of image processing data paths which automatically configure
to changes in the format of the video being processed. This minimizes the external
control logic required to configure a video system.

Packets
The packets of the Avalon-ST Video protocol are split into symbols, where each
symbol represents a single piece of data (see the Avalon Interface Specifications). For all
packet types on a particular Avalon-ST interface the number of symbols sent in
parallel (that is, on one clock cycle) and the bit width of all symbols is fixed. The
symbol bit width and number of symbols sent in parallel defines the structure of the
packets.

The functions predefine the following two types of packet:

■ Video data packets containing only uncompressed video data

■ Control data packets containing the control data configure the cores for incoming
video data packets

There are also seven packet types reserved for users, and seven packet types reserved
for future definition by Altera.

The packet type is defined by a 4-bit packet type identifier. This type identifier is the
first value of any packet. It is the symbol in the least significant bits of the interface.
Functions do not use any symbols in parallel with the type identifier (assigned X).
Video and Image Processing Suite User Guide July 2010 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 4: Interfaces 4–3
Avalon-ST Video Protocol
Table 4–1 lists the packet types and Figure 4–2 on page 4–3 shows the structure of a
packet.

The Avalon-ST Video protocol is designed to be most efficient for transferring video
data, therefore the symbol bit width and the number of symbols transferred in parallel
(that is, in one clock cycle) are defined by the parameters of the video data packet
types (refer to “Static Parameters of Video Data Packets” on page 4–3).

Video Data Packets
Video data packets transmit video data between the MegaCore functions. A video
data packet contains the color plane values of the pixels for an entire progressive
frame or an entire interlaced field.

The video data is sent per pixel in a raster scan order. The pixel order is as follows:

1. From the top left of the image right wards along the horizontal line.

2. At the end of the current line, jump to the left most pixel of the next horizontal line
down.

3. Go right wards along the horizontal line.

4. Repeat 2 and 3 until the bottom right pixel is reached and the frame has been sent.

Static Parameters of Video Data Packets
The following two static parameters specify the Avalon-ST interface that video
systems use:

Table 4–1. Avalon-ST Video Packet Types

Type Identifier Description

0 Video data packet

1–8 User packet types

9–12 Reserved for future Altera use

13 Ancillary data packet

14 Reserved for future Altera use

15 Control data packet

Figure 4–2. Packet Structure

Start End

Packet type identifier
(4 bits in least significant symbol,

X’s for unused symbols)

Data of the packet
(Split into symbols)

X Symbols can be
transmitted in parallel
(2 in this example)
July 2010 Altera Corporation Video and Image Processing Suite User Guide

4–4 Chapter 4: Interfaces
Avalon-ST Video Protocol
Bits Per Pixel Per Color Plane
The maximum number of bits that represent each color plane value within each pixel.
For example R’G’B’ data of eight bits per sample (24 bits per pixel) would use eight
bits per pixel per color plane.

1 This parameter also defines the bit width of symbols for all packet types on a
particular Avalon-ST interface. An Avalon-ST interface must be at least four bits wide
to fully support the Avalon-ST Video protocol.

Color Pattern
The organization of the color plane samples within a video data packet is referred to
as the color pattern. This color pattern cannot change within a video data packet.

A color pattern is represented as a matrix which defines a repeating pattern of color
plane samples that make up a pixel (or multiple pixels). The height of the matrix
indicates the number of color plane samples transmitted in parallel, the width
determines how many cycles of data are transmitted before the pattern repeats.

Each color plane sample in the color pattern maps to an Avalon-ST symbol. The
mapping is such that color plane samples on the left of the color pattern matrix are the
symbols transmitted first. Color plane samples on the top are assigned to the symbols
occupying the most significant bits of the Avalon-ST data signal as shown in
Figure 4–3.

1 The number of color plane samples transmitted in parallel (that is, in one clock cycle)
defines the number of symbols transmitted in parallel for all packet types on a
particular Avalon-ST interface.

A color pattern can represent more than one pixel. This is the case when consecutive
pixels contain samples from different color planes—There must always be at least one
common color plane between all pixels in the same color pattern. Color patterns
representing more than one pixel are identifiable by a repeated color plane name. The
number of times a color plane name is repeated is the number of pixels represented.
Figure 4–4 shows two pixels of horizontally subsampled Y' CbCr (4:2:2) where Cb and
Cr alternate between consecutive pixels.

Figure 4–3. Symbol Transmission Order

RGB

Symbol transmitted first

Symbol transmitted last
B

G

RSymbol in most significant bits

Symbol in least significant bits

Figure 4–4. Horizontally Subsampled Y'CbCr

Cb Cr

Y Y
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 4: Interfaces 4–5
Avalon-ST Video Protocol
In the common case, each element of the matrix contains the name of a color plane
from which a sample should be taken. The exception is for vertically sub sampled
color planes. These are indicated by writing the names of two color planes in a single
element, one above the other. Samples from the upper color plane are transmitted on
even rows and samples from the lower plane transmitted on odd rows as shown in
Figure 4–5.

Table 4–2 lists the static parameters and gives some examples of how you can use
them.

The Avalon-ST Video protocol does not force the use of specific color patterns,
however a few MegaCore functions of the Video and Image Processing Suite only
process video data packets correctly if they use a certain set of color patterns.
Chapter 5, Functional Descriptions describes the set of color patterns that the
MegaCore functions use.

Figure 4–5. Vertically Subsampled Y'CbCr

Cb
CrY Y

Plane for even rows

Plane for odd rows

Table 4–2. Examples of Static Avalon-ST Video Data Packet Parameters

Parameters
Description

Bits per Color Sample Color Pattern

8 Three color planes, B’, G’, and R’ are transmitted in alternating sequence and each
B’, G’, or R’ sample is represented using 8 bits of data.

10

Three color planes are transmitted in parallel, leading to higher throughput than
when transmitted in sequence, usually at higher cost. Each R’, G’, or B’ sample is
represented using 10 bits of data, so that, in total, 30 bits of data are transmitted
in parallel.

10
4:2:2 video in the Y’CbCr color space, where there are twice as many Y’ samples
as Cb or Cr samples. One Y’ sample and one of either a Cb or a Cr sample is
transmitted in parallel. Each sample is represented using 10 bits of data.

RGB

B

G

R

Cb Cr

Y Y
July 2010 Altera Corporation Video and Image Processing Suite User Guide

4–6 Chapter 4: Interfaces
Avalon-ST Video Protocol
Table 4–3 shows the recommended color patterns for common combinations of color
spaces and color planes in parallel and sequence.

Following these recommendations, ensures compatibility minimizing the need for
color pattern rearranging. These color patterns are designed to be compatible with
common clocked video standards where possible.

1 If you must rearrange color patterns, you can use the Color Plane Sequencer
MegaCore function.

Specifying Color Pattern Options
You can specify parameters in the MegaWizard interface that allow you to describe a
color pattern that has its color planes entirely in sequence (one per cycle) or entirely in
parallel (all in one cycle). You can select the number of color planes per pixel, and
whether the planes of the color pattern transmit in sequence or in parallel.

Some of the MegaCore functions' user interfaces provide controls allowing you to
describe a color pattern that has color plane samples in parallel with each other and in
sequence such that it extends over multiple clock cycles. You can select the number of
color planes of the color pattern in parallel (number of rows of the color pattern) and
the number of color planes in sequence (number of columns of the color pattern).

Table 4–3. Recommended Color Patterns

Color Space
Recommended Color Patterns

Parallel Sequence

R’G’B

Y’CbCr

4:2:2 Y’CbCr

4:2:0 Y’CbCr

B

G

R RGB

Y

Cb

Cr

CrCb Y

Cb Cr

Y Y CrCb YY

CrCb

Y

Y

Cb
CrY Y
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 4: Interfaces 4–7
Avalon-ST Video Protocol
Structure of Video Data Packets
Figure 4–6 shows the structure of a video data packet using a set parallel color pattern
and bits per pixel per color plane.

Figure 4–7 on page 4–7 shows the structure of a video data packet using a set
sequential color pattern and bits per pixel per color plane.

Control Data Packets
Control data packets configure the MegaCore functions so that they correctly process
the video data packets that follow.

In addition to a packet type identifier of value 15, control data packets contain the
following data:

Width (16 bit), Height (16 bit), Interlacing (4 bit)

The width and height values are the dimensions of the video data packets that follow.
The width refers to the width in pixels of the lines of a frame. The height refers the
number of lines in a frame or field, such that a field of interlaced 1920×1080 (1080i)
would have a width of 1920 and a height of 540, and a frame of 1920×1080 (1080p)
would have a width of 1920 and a height of 1080.

Figure 4–6. Parallel Color Pattern

Figure 4–7. Sequence Color Pattern

Start End

Video data packet type identifier
(4 bits in least significant symbol,

X’s for unused symbols)

Video Data, repeating a
regular color pattern

Color
Pattern

Bits per pixel
per color plane

= 8

0

X

X Symbols on bits 23:16

Symbols on bits 15:8

Symbols on bits 7:0

B

G

R

B

G

R

B

G

R

B

G

R

B

G

R

B

G

R

B

G

R

B

G

R

B

G

R

B

G

R

B

G

R

0Symbols on bits 7:0

B G RColor
Pattern

Bits per pixel
per color plane

= 8
Video Data, repeating a

regular color pattern

Video data packet type identifier
(4 bits in least significant symbol,

X’s for unused symbols)

Start End

B G R B G R B G R B G R
July 2010 Altera Corporation Video and Image Processing Suite User Guide

4–8 Chapter 4: Interfaces
Avalon-ST Video Protocol
When a video data packet uses a subsampled color pattern, the individual color
planes of the video data packet have different dimensions. For example, 4:2:2 has one
full width, full height plane and two half width, full height planes. For 4:2:0 there are
one full width, full height plane and two half width, half height planes. In these cases
the width and height fields of the control data packet should be configured for the
fully sampled, full width, and full height plane.

The function codes the interlacing value to indicate progressive data or which field to
expect next and how fields should reconstruct frames. The most significant two bits of
the interlacing nibble describe whether the next video data packet is either
progressive, interlaced field 0 (f0) containing lines 0, 2, 4.... or interlaced field 1 (f1)
containing lines 1, 3, 5... 00 means progressive, 10 means interlaced f0, and 11 means
interlaced f1.

The meaning of the second two bits is dependent on the first two bits. If the first two
bits are set to f0 or f1, the second two bits describe the synchronization of interlaced
data. Use the synchronization bits for progressive segmented frame (PsF) content,
where progressive frames are transmitted as two interlaced fields.

1 The synchronization bits do not affect the behavior of the Deinterlacer because the
synchronization field is fixed at compile time. However, they do affect the behavior of
the Frame Buffer when dropping and repeating pairs of fields.

Synchronizing on f0 means that a frame should be constructed from an f1 followed by
an f0. Similarly, synchronizing on f1 means that a frame should be constructed from
an f0 followed by an f1. The other synchronization options are "don't care" when there
is no difference in combining an f1 then f0, or an f0 then f1. The final option is "don't
know" to indicate that the synchronization of the interlaced fields is unknown. The
encoding for these options are 00 for synchronize on f0, 01 for synchronize on f1, 11
for "don't care", and 10 for "don't know".

If the first two bits indicate a progressive frame. the second two bits indicate the last
field type that the progressive frame was deinterlaced from. The encoding for this is
10 for "unknown" or 11 for "not deinterlaced," 00 for f0 last, and 0 for f1 last. Table 4–4
gives some examples of the control parameters.

Table 4–4. Examples of Control Data Packet Parameters

Parameters
Description

Type Width Height Interlacing

15 1920 1080 0011 The frames that follow are progressive with a resolution of 1920×1080.

15 640 480 0011 The frames that follow are progressive with a resolution of 640×480.

15 640 480 0000 The frames that follow are progressive with a resolution of 640×480. The frames
were deinterlaced using f0 as the last field.

15 640 480 0001 The frames that follow are progressive with a resolution of 640×480. The frames
were deinterlaced using f1 as the last field.

15 640 480 1000 The fields that follow are 640 pixels wide and 240 pixels high. The next field is f0
(even lines) and it is paired with the f1 field that precedes it.

15 1920 540 1100 The fields that follow are 1920 pixels wide and 540 pixels high. The next field is f1
(odd lines) and it is paired with the f0 field that follows it.

15 1920 540 1101 The fields that follow are 1920 pixels wide and 540 pixels high. The next field is f1
(odd lines) and it is paired with the f0 field that precedes it.
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 4: Interfaces 4–9
Avalon-ST Video Protocol
Use of Control Data Packets
A control data packet must immediately precede every video data packet. To facilitate
this any IP function that generates control data packets should do so once before each
video data packet. Additionally all other MegaCore functions in the processing
pipeline must either pass on a control data packet or generate a new one before each
video data packet. If the function receives more than one control data packet before a
video data packet, it uses the parameters from the last received control data packet. If
the function receives a video data packet with no preceding control data packet, the
current functions keep the settings from the last control data packet received, with the
exception of the next interlaced field type—toggling between f0 and f1 for each new
video data packet that it receives.

1 This behavior may not be supported in future releases. Altera recommends for
forward compatibility that functions implementing the protocol ensure there is a
control data packet immediately preceding each video data packet.

Structure of a Control Data Packet
A control data packet complies with the standard of a packet type identifier followed
by a data payload. The data payload is split into nibbles of 4 bits, each data nibble is
part of a symbol. If the width of a symbol is greater than 4 bits, the function does not
use the most significant bits of the symbol.

 Table 4–5 shows the order of the nibbles and associated symbols.

If the number of symbols transmitted in one cycle of the Avalon-ST interface is more
than one, then the nibbles (Table 4–5) are distributed such that the symbols occupying
the least significant bits are populated first.

15 1920 540 1011
The fields that follow are 1920 pixels wide and 540 pixels high. The next field is f0
(even lines) and the stream should be handled as genuine interlaced video material
where the fields are all temporally disjoint.

15 1920 540 1010
The fields that follow are 1920 pixels wide and 540 pixels high. The next field is f0
(even lines) and the stream should be handled as genuine interlaced video content
although it may originate from a progressive source converted with a pull-down.

Table 4–4. Examples of Control Data Packet Parameters

Parameters
Description

Type Width Height Interlacing

Table 4–5. Order of Nibbles and Associated Symbols

Order Symbol Order Symbol

1 width[15..12] 6 height[11..8]

2 width[11..8] 7 height[7..4]

3 width[7..4] 8 height[3..0]

4 width[3..0] 9 interlacing[3..0]

5 height[15..12]
July 2010 Altera Corporation Video and Image Processing Suite User Guide

4–10 Chapter 4: Interfaces
Avalon-ST Video Protocol
Figure 4–8, Figure 4–9, and Figure 4–10 on page 4–10 show examples of control data
packets, and how they are split into symbols.

Ancillary Data Packets
Ancillary data packets send ancillary packets between MegaCore functions. Ancillary
data packets are typically placed between a control data packet and a video data
packet and contain information that describes the video data packet, for example
active format description codes.

An ancillary data packet can contain one or more ancillary packets, each ancillary
packet starts with the code 0, 3FF, 3FF.

Figure 4–8. Three Symbols in Parallel

Figure 4–9. Two Symbols in Parallel

Figure 4–10. One Symbol in Parallel

Start End

3

15 Symbols in least significant bits

Symbols in middle significant bits

Symbols in most significant bits

Control data, reference numbers to Table 4-5

X

Control data packet type identifier
(4 bits in least significant symbol,

X’s for unused symbols)

X

96

852

741

Control data packet type identifier
(4 bits in least significant symbol,

X’s for unused symbols)

Symbols in least significant bits

Symbols in most significant bits

Start End

Control data, reference numbers to Table 4-5

315

XX

9

6 8

5

2

7

4

1

Control data, reference numbers to Table 4-5

Control data packet type identifier
(4 bits in least significant symbol,

X’s for unused symbols)

Start End

315 96 852 741
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 4: Interfaces 4–11
Avalon-ST Video Protocol
f The format of ancillary packets is defined in the SMPTE S291M standard.

MegaCore functions are not required to understand or process ancillary data packets,
but must forward them on, as is done with user-defined and Altera-reserved packets.

Figure 4–11 shows an example of an Avalon-ST Video Ancillary Data Packet
containing two ancillary packets.

User-Defined and Altera-Reserved Packets
The Avalon-ST Video protocol specifies that there are seven packet types reserved for
use by users and seven packet types reserved for future use by Altera. The data
content of all of these packets is undefined. However the structure must follow the
rule that the packets are split into symbols as defined by the number color plane
samples sent in one cycle of the color pattern.

Unlike control data packets, user packets are not restricted to four bits of data per
symbol. However when a core reduces the bits per pixel per color plane (and thus the
bit width of the symbols) to less than the number of bits in use per symbol, data is
lost.

Packet Propagation
The Avalon-ST Video protocol is optimized for the transfer of video data while still
providing a flexible way to transfer control data and other information. To make the
protocol flexible and extensible, the Video and Image Processing MegaCore functions
obey the following rules about propagating non-video packets:

■ User packets should be propagated until their end of packet signal is received.
Nevertheless, MegaCore functions that buffer packets into external memory might
introduce a maximum size due to limited storage space.

■ MegaCore functions can propagate control packets or modify them on the fly.
MegaCore functions can also cancel a control packet by following it with a
corrected packet.

■ When the bits per color sample change from the input to the output side of a block,
the non-video packets are truncated or padded. Otherwise, the full bit width is
transferred.

Figure 4–11. Avalon-ST Video Ancillary Data Packet

0 3FF 3FF 0 3FF 3FF

sop

Y data

eop

ancillary
packet 1

ancillary
packet 2

C data x x x x x xD

x

x = don’t care
July 2010 Altera Corporation Video and Image Processing Suite User Guide

4–12 Chapter 4: Interfaces
Avalon-ST Video Protocol
■ When the color pattern changes from the input to the output side of a block, in a
way that changes the number of color planes sent in parallel, then the end of non-
video data packets can be padded with extra data. When defining a packet type
where the length is variable and meaningful, it is recommended to send the length
at the start of the packet.

Transmission of Avalon-ST Video Over Avalon-ST Interfaces
Avalon-ST Video is a protocol transmitted over Avalon-ST interfaces. The Avalon
Interface Specifications define parameters that you can use to specify the types of
Avalon-ST interface.

Table 4–6 on page 4–12 lists the values of these parameters that are defined for
transmission of the Avalon-ST Video protocol. All parameters not explicitly listed in
the table have undefined values.

The Avalon Interface Specifications defines signal types of which many are optional.
Table 4–7 lists the signals for transmitting Avalon-ST Video. Table 4–7 does not show
unused signals.

Packet Transfer Examples
All packets are transferred using the Avalon-ST signals in the same way. Three
examples are given here, two showing video data packets, and one showing a control
data packet. Each is an example of generic packet transmission.

Example 1 (Data Transferred in Parallel)
This example shows the transfer of a video data packet in to and then out of a generic
MegaCore function that supports the Avalon-ST Video protocol.

Table 4–6. Avalon-ST Interface Parameters

Parameter Name Value

BITS_PER_SYMBOL Variable. Always equal to the Bits per Color Sample parameter value of the
stream of pixel data being transferred.

SYMBOLS_PER_BEAT
Variable. Always equal to the number of color samples being transferred in
parallel. This is equivalent to the number of rows in the color pattern
parameter value of the stream of pixel data being transferred.

READY_LATENCY 1

Table 4–7. Avalon-ST Interface Signal Types

Signal Width Direction

ready 1 Sink to Source

valid 1 Source to Sink

data bits_per_symbol × symbols_per_beat Source to Sink

startofpacket 1 Source to Sink

endofpacket 1 Source to Sink
Video and Image Processing Suite User Guide July 2010 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 4: Interfaces 4–13
Avalon-ST Video Protocol
In this case, both the input and output video data packets have a parallel color pattern
and eight bits per pixel per color plane as shown in Table 4–8.

Figure 4–12 shows how the first few pixels of a frame are processed.

This example has one Avalon-ST port named din and one Avalon-ST port named
dout. Data flows into the MegaCore function through din, is processed and flows out
of the MegaCore function through dout.

Table 4–8. Parameters for Example of Data Transferred in Parallel

Parameter Value

Bits per Pixel per Color Plane 8

Color Pattern

B

G

R

Figure 4–12. Timing Diagram Showing R’G’B’ Transferred in Parallel

clock

din_ready

din_startofpacket

din_valid

din_data

23:16

15:8

7:0

dout_ready

dout_valid

dout_endofpacket

dout_data

23:16

15:8

7:0

1. 2. 3. 4. 5. 6. 7.

B0,0

G0,0

R0,0

B1,0 B2,0

G2,0

R1,0 B2,0

G1,0

B0,0

G0,0

R0,0

Bx,y

Gx,y

Rx,y

n.

X

X

0

din_endofpacket

dout_startofpacket

X

X

0

July 2010 Altera Corporation Video and Image Processing Suite User Guide

4–14 Chapter 4: Interfaces
Avalon-ST Video Protocol
There are five signals types (ready, valid, data, startofpacket, and endofpacket)
associated with each port. The din_ready signal is an output from the MegaCore
function and indicates when the input port is ready to receive data. The din_valid
and din_data signals are both inputs. The source connected to the input port sets
din_valid to logic '1' when din_data has useful information that should be sampled.
din_startofpacket is an input signal that is raised to indicate the start of a packet,
with din_endofpacket signaling the end of a packet.

The five output port signals have equivalent but opposite semantics.

The sequence of events shown in Figure 4–12 is:

1. Initially, din_ready is logic '0', indicating that the MegaCore function is not ready
to receive data on the next cycle. Many of the Video and Image Processing Suite
MegaCore functions are not ready for a few clock cycles in between rows of image
data or in between video frames. For further details of each MegaCore function,
refer to the “Functional Descriptions” on page 5–1.

2. The MegaCore function sets din_ready to logic '1', indicating that the input port is
ready to receive data one clock cycle later. The number of clock cycles of delay
which should be applied to a ready signal is referred to as ready latency in the
Avalon Interface Specifications. All of the Avalon-ST interfaces that the Video and
Image Processing Suite uses have a ready latency of one clock cycle.

3. The source feeding the input port sets din_valid to logic '1' indicating that it is
sending data on the data port and sets din_startofpacket to logic '1' indicating
that the data is the first value of a new packet. The data is 0, indicating that the
packet is video data.

4. The source feeding the input port holds din_valid at logic '1' and drops
din_startofpacket indicating that it is now sending the body of the packet. It puts
all three color values of the top left pixel of the frame on to din_data.

5. No data is transmitted for a cycle even though din_ready was logic '1' during the
previous clock cycle and therefore the input port is still asserting that it is ready for
data. This could be because the source has no data to transfer. For example, if the
source is a FIFO, it could have become empty.

6. Data transmission resumes on the input port: din_valid transitions to logic '1' and
the second pixel is transferred on din_data. Simultaneously, the MegaCore
function begins transferring data on the output port. The example MegaCore
function has an internal latency of three clock cycles so the first output is
transferred three cycles after being received. This output is the type identifier for a
video packet being passed along the datapath. For guidelines about the latencies
of each Video and Image Processing MegaCore function, refer to “Latency” on
page 5–73.

7. The third pixel is input and the first processed pixel is output.

8. For the final sample of a frame, the source sets din_endofpacket to logic '1',
din_valid to '1', and puts the bottom-right pixel of the frame on to din_data.
Video and Image Processing Suite User Guide July 2010 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 4: Interfaces 4–15
Avalon-ST Video Protocol
Example 2 (Data Transferred in Sequence)
This example shows how a number of pixels from the middle of a frame could be
processed by another MegaCore function. This time handling a color pattern that has
planes B'G'R' in sequence. This example does not show the start of packet and end of
packet signals because these are always low during the middle of a packet.

The bits per pixel per color plane and color pattern are shown in Table 4–9.

Figure 4–13 shows how a number of pixels from the middle of a frame are processed.

This example is similar to Figure 4–12 on page 4–13 except that it is configured to
accept data in sequence rather than parallel. The signals shown in the timing diagram
are therefore the same but with the exception that the two data ports are only 8 bits
wide.

The sequence of events shown in Figure 4–13 is:

1. Initially, din_ready is logic '1'. The source driving the input port sets din_valid to
logic '1' and puts the blue color value Bm,n on the din_data port.

2. The source holds din_valid at logic '1' and the green color value Gm,n is input.

3. The corresponding red color value Rm,n is input.

Table 4–9. Parameters for Example of Data Transferred in Sequence

Parameter Value

Bits per Color Sample 8

Color Pattern RGB

Figure 4–13. Timing Diagram Showing R’G’B’ Transferred in Sequence

Note to Figure 4–13:

(1) The startofpacket and endofpacket signals are not shown but are always low during the sequence shown in this figure.

clock

din_ready

din_valid

din_data 7:0 Rm,n RG0,0Gm,nBm,n Bm+1,n

1. 2. 3. 4. 5. 6. 7.

dout_ready

dout_valid

dout_data 7:0 R

8. 9.

G1,0Gm+1,n

G0,0Gm,nBm,n

m+1,n

m,n
July 2010 Altera Corporation Video and Image Processing Suite User Guide

4–16 Chapter 4: Interfaces
Avalon-ST Video Protocol
4. The MegaCore function sets dout_valid to logic '1' and outputs the blue color
value of the first processed color sample on the dout_data port. Simultaneously
the sink connected to the output port sets dout_ready to logic '0'. The Avalon
Interface Specifications state that sinks may set ready to logic '0' at any time, for
example because the sink is a FIFO and it has become full.

5. The MegaCore function sets dout_valid to logic '0' and stops putting data on the
dout_data port because the sink is not ready for data. The MegaCore function also
sets din_ready to logic '0' because there is no way to output data and the
MegaCore function must stop the source from sending more data before it uses all
internal buffer space. The sink holds din_valid at logic '1' and transmits one more
color sample Gm+1,n, which is legal because the ready latency of the interface means
that the change in the MegaCore function's readiness does not take effect for one
clock cycle.

6. Both the input and output interfaces transfer no data: the MegaCore function is
stalled waiting for the sink.

7. The sink sets dout_ready to logic '1'. This could be because space has been cleared
in a FIFO.

8. The MegaCore function sets dout_valid to logic '1' and resumes transmitting data.
Now that the flow of data is again unimpeded, it sets din_ready to logic '1'.

9. The source responds to din_ready by setting din_valid to logic '1' and resuming
data transfer.

Example 3 (Control Data Transfer)
Figure 4–14 shows the transfer of a control packet for a field of 720×480i video (with
field height 240). It is transferred over an interface configured for 10-bit data with two
color planes in parallel. Each word of the control packet is transferred in the lowest
four bits of a color plane, starting with bits 3:0, then 13:10.
Video and Image Processing Suite User Guide July 2010 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 4: Interfaces 4–17
Avalon-MM Slave Interfaces
1 Example 1 uses the start of packet and end of packet lines in exactly the same way.

Avalon-MM Slave Interfaces
The Video and Image Processing Suite MegaCore functions that permit run-time
control of some aspects of their behavior, use a common type of Avalon-MM slave
interface for this purpose.

Each slave interface provides access to a set of control registers which must be set by
external hardware. You should assume that these registers power up in an undefined
state. The set of available control registers and the width in binary bits of each register
varies with each control interface.

For a description of the control registers for each individual MegaCore function, refer
to Chapter 7, Control Register Maps.

The first two registers of every control interface perform the following two functions
(the others vary with each control interface):

■ Register 0 is the Go register. Bit zero of this register is the Go bit, the function does
not use all other bits. A few cycles after the function comes out of reset, it writes a
zero in the Go bit (remember that all registers in Avalon-MM control slaves power
up in an undefined state).

Although there are a few exceptions, most Video and Image Processing Suite
MegaCore functions stop at the beginning of an image data packet if the Go bit is
set to 0. This allows you to stop the MegaCore function and to program run-time
control data before the processing of the image data begins. A few cycles after the
Go bit is set by external logic connected to the control port, the MegaCore function
begins processing image data. If the Go bit is unset while data is being processed,
then the MegaCore function stops processing data again at the beginning of the
next image data packet and waits until the Go bit is set by external logic.

Figure 4–14. Example of Control Packet Transfer

clock

din_valid

din_startofpacket

CbCr din_data(13:10) 0x2

din_endofpacket

Y din_data(3:0)

0x0 0x0 0x0

0x00x0 0xD0xF 0x0 0xF 10xx

720(0x02D0) 240(0x00F0) image dataif0
binary
f0 - 10xx
f1 - 11xx
p - 00xx
July 2010 Altera Corporation Video and Image Processing Suite User Guide

4–18 Chapter 4: Interfaces
Avalon-MM Slave Interfaces
■ Register 1 is the Status register. Bit zero of this register is the Status bit, the
function does not use all other bits. The function sets the Status bit to 1 when it is
running, and zero otherwise. External logic attached to the control port should not
attempt to write to the Status register.

The following pseudo-code illustrates the design of functions that double-buffer their
control (that is, all MegaCore functions except the Gamma Corrector, the Alpha
Blending Mixer and some Scaler parameterizations):

go = 0;
while (true)
{

read_non_image_data_packets();
status = 0;
while (go != 1)

wait;
read_control(); // Copies control to internal registers
status = 1;
send_image_data_header();
process_frame();

}

The Gamma Corrector does not double buffer its control data but the algorithm
described in the previous paragraph is still largely applicable.

Most Video and Image Processing Suite MegaCore functions with a slave interface
read and propagate non-image data packets from the input stream until the image
data header (0) of an image data packet has been received. The status bit is then set to
0 and the MegaCore function waits until the Go bit is set to 1 if it is not already. Once
the Go bit is set to 1, the MegaCore function buffers control data, sets its status bit back
to 1 and starts processing image data.

1 There is a small amount of buffering at the input of each Video and Image Processing
Suite MegaCore function and you should expect that a few samples are read and
stored past the image data header even if the function is stalled.

You can use the Go and Status registers in combination to synchronize changes in
control data to the start and end of frames. For example, suppose you want to build a
system with a Gamma Corrector MegaCore function where the gamma look-up table
is updated between each video frame.

You can build logic (or program a Nios II processor) to control the gamma corrector as
follows:

1. Set the Go bit to zero. This causes the MegaCore function to stop processing at the
end of the current frame.

2. Poll the Status bit until the MegaCore function sets it to zero. This occurs at the
end of the current frame, after the MegaCore function has stopped processing
data.

3. Update the gamma look-up table.

4. Set the Go bit to one. This causes the MegaCore function to start processing the
next frame.

5. Poll the Status bit until the MegaCore function sets it to one. This occurs when the
MegaCore function has started processing the next frame (and therefore setting
the Go bit to zero causes it to stop processing at the end of the next frame).
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 4: Interfaces 4–19
Avalon-MM Slave Interfaces
6. Repeat steps 1 to 5 until all frames are processed.

This procedure ensures that the update is performed exactly once per frame and that
the MegaCore function is not processing data while the update is performed. When
using MegaCore functions which double-buffer control data, such as the Alpha
Blending Mixer and Scaler, a more simple process may be sufficient:

1. Set the Go bit to zero. This causes the MegaCore function to stop if it gets to the end
of a frame while the update is in progress.

2. Update the control data.

3. Set the Go bit to one.

The next time a new frame is started after the Go bit is set to one, the new control
data is loaded into the MegaCore function.

The reading on non-video packets is performed by handling any packet until one
arrives with type 0. This means that when the Go bit is checked, the non-video type
has been taken out of the stream but the video is retained.

Specification of the Type of Avalon-MM Slave Interfaces
The Avalon Interface Specifications define many signal types, many of which are
optional.

Table 4–10 lists the signals that the Avalon-MM slave interfaces use in the Video and
Image Processing Suite. Table 4–10 does not show unused signals.

1 Clock and reset signal types are not included. The Video and Image Processing Suite
does not support Avalon-MM interfaces in multiple clock domains. Instead, the
Avalon-MM slave interfaces must operate synchronously to the main clock and reset
signals of the MegaCore function. The Avalon-MM slave interfaces must operate
synchronously to this clock.

Table 4–10. Avalon-MM Slave Interface Signal Types

Signal Width Direction

chipselect (1) 1 Input

read (1) 1 input

address Variable Input

readdata Variable Output

write 1 Input

writedata Variable Input

waitrequest (2) 1 Output

irq (3) 1 Output

Notes to Table 4–10:

(1) The Slave interfaces of the Video and Image Processing MegaCore functions may use either chipselect or
read.

(2) For slave interfaces that do not have a predefined number of wait cycles to service a read or a write request.
(3) For slave interfaces with an interrupt request line.
July 2010 Altera Corporation Video and Image Processing Suite User Guide

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

4–20 Chapter 4: Interfaces
Avalon-MM Master Interfaces
The Avalon Interface Specifications define a set of transfer properties which may or may
not be exhibited by any Avalon-MM interface. Together with the list of supported
signals, these properties fully define an interface type.

The control interfaces of the Video and Image Processing Suite MegaCore functions
that do not use a waitrequest signal, exhibit the following transfer properties:

■ Zero wait states on write operations

■ Two wait states on read operations

Avalon-MM Master Interfaces
The Video and Image Processing Suite MegaCore functions use a common type of
Avalon-MM master interface for access to external memory. These master interfaces
should be connected to external memory resources via arbitration logic such as that
provided by the system interconnect fabric.

Specification of the Type of Avalon-MM Master Interfaces
The Avalon Interface Specifications define many signal types, many of which are
optional.

Table 4–11 shows the signals for the Avalon-MM master interfaces in the Video and
Image Processing Suite. Table 4–11 does not show unused signals.

1 The clock and reset signal types are optional. The Avalon-MM master interfaces can
operate on a different clock from the MegaCore function and its other interfaces by
selecting the relevant option in the MegaWizard interface when and if it is available.

Some of the signals in Table 4–11 are read-only and not required by a master interface
which only performs write transactions.

Some other signals are write-only and not required by a master interface which only
performs read transactions. To simplify the Avalon-MM master interfaces and
improve efficiency, read-only ports are not present in write-only masters, and write-
only ports are not present in read-only masters.

Table 4–11. Avalon-MM Master Interface Signal Types

Signal Width Direction Usage

clock 1 Input Read-Write (optional)

readdata variable Input Read-only

readdatavalid 1 Input Read-only

reset 1 Input Read-Write (optional)

waitrequest 1 Input Read-write

address 32 Output Read-write

burstcount variable Output Read-write

read 1 Output Read-only

write 1 Output Write-only

writedata variable Output Write-only
Video and Image Processing Suite User Guide July 2010 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 4: Interfaces 4–21
Buffering of Non-Image Data Packets in Memory
Read-write ports are present in all Avalon-MM master interfaces. Refer to the
description of each MegaCore function for information about whether the master
interface is read-only, write-only or read-write.

The Avalon Interface Specifications define a set of transfer properties which may or may
not be exhibited by any Avalon-MM interface. Together with the list of supported
signals, these properties fully define an interface type.

The external memory access interfaces of the Video and Image Processing Suite
MegaCore functions exhibit the following transfer property:

■ Pipeline with variable latency

Buffering of Non-Image Data Packets in Memory
The Frame Buffer and the Deinterlacer (when buffering is enabled) route the video
stream through an external memory. Non-image data packets must be buffered and
delayed along with the frame or field they relate to and extra memory space has to be
allocated. You must specify the maximum number of packets per field and the
maximum size of each packet to cover this requirement.

The maximum size of a packet is given as a number of symbols, header included. For
instance, the size of an Avalon-ST Video control packet is 10. This size does not
depend on the number of channels transmitted in parallel. Packets larger than this
maximum limit may be truncated as extra data is discarded.

The maximum number of packets is the number of packets that can be stored with
each field or frame. Older packets are discarded first in case of overflow. When frame
dropping is enabled, the packets associated with a field that has been dropped are
automatically transferred to the next field and count towards this limit.

The Frame Buffer and the Deinterlacer handle Avalon-ST Video control packets
differently. The Frame Buffer processes and discards incoming control packets
whereas the Deinterlacer processes and buffers incoming control packets in memory
before propagating them. Because both MegaCore functions generate a new updated
control packet before outputting an image data packet, this difference should be of
little consequence as the last control packet always takes precedence

1 Altera recommends that you keep the default values for Number of packets buffered
per frame and Maximum packet length, unless you intend to extend the Avalon-ST
Video protocol with custom packets.
July 2010 Altera Corporation Video and Image Processing Suite User Guide

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

4–22 Chapter 4: Interfaces
Buffering of Non-Image Data Packets in Memory
Video and Image Processing Suite User Guide July 2010 Altera Corporation

July 2010 Altera Corporation
5. Functional Descriptions
Each Video and Image Processing MegaCore function is implemented to generate
hardware that performs its operations on multiple color planes (typically three).

Color Space Converter
The Color Space Converter MegaCore function provides a flexible and efficient means
to convert image data from one color space to another.

A color space is a method for precisely specifying the display of color using a three-
dimensional coordinate system. Different color spaces are best for different devices,
such as R'G'B' (red-green-blue) for computer monitors or Y'CbCr (luminance-
chrominance) for digital television.

Color space conversion is often necessary when transferring data between devices
that use different color space models. For example, to transfer a television image to a
computer monitor, you may need to convert the image from the Y'CbCr color space to
the R'G'B' color space. Conversely, transferring an image from a computer display to a
television may require a transformation from the R'G'B' color space to Y'CbCr.

Different conversions may be required for standard definition television (SDTV) and
high definition television (HDTV). You may also want to convert to or from the Y'IQ
(luminance-color) color model for National Television System Committee (NTSC)
systems or the Y'UV (luminance-bandwidth-chrominance) color model for Phase
Alternation Line (PAL) systems.

Input and Output Data Types
The Color Space Converter MegaCore function inputs and outputs support signed or
unsigned data and 4 to 20 bits per pixel per color plane. Minimum and maximum
guard bands are also supported. The guard bands specify ranges of values that should
never be received by, or transmitted from the MegaCore function. Using output guard
bands allows the output to be constrained, such that it does not enter the guard bands.

Color Space Conversion
Conversions between color spaces are achieved by providing an array of nine
coefficients and three summands that relate the color spaces. These can be set at
compile time, or at run time using the Avalon-MM slave interface.

Given a set of nine coefficients [A0, A1, A2, B0, B1, B2, C0, C1, C2] and a set of three
summands [S0, S1, S2], the output values on channels 0, 1, and 2 (denoted dout_0,
dout_1, and dout_2) are calculated as follows:

dout_0 = (A0 × din_0) + (B0 × din_1) + (C0 × din_2) + S0
dout_1 = (A1 × din_0) + (B1 × din_1) + (C1 × din_2) + S1
dout_2 = (A2 × din_0) + (B2 × din_1) + (C2 × din_2) + S2

where din_0, din_1, and din_2 are inputs read from channels 0, 1, and 2
respectively.
Video and Image Processing Suite User Guide

5–2 Chapter 5: Functional Descriptions
Color Space Converter
User-specified custom constants and the following predefined conversions are
supported:

■ Computer B’G’R’ to CbCrY’: SDTV

■ CbCrY’: SDTV to Computer B’G’R’

■ Computer B’G’R’ to CbCrY’: HDTV

■ CbCrY’: HDTV to Computer B’G’R’

■ Studio B’G’R’ to CbCrY’: SDTV

■ CbCrY’: SDTV to Studio B’G’R’

■ Studio B’G’R’ to CbCrY’: HDTV

■ CbCrY’: HDTV to Studio B’G’R’

■ IQY' to Computer B'G'R'

■ Computer B'G'R' to IQY'

■ UVY' to Computer B'G'R'

■ Computer B'G'R' to UVY'

The values are assigned in the order indicated by the conversion name. For example,
if you select Computer B’G’R’ to CbCrY’: SDTV, din_0 = B’, din_1 = G’, din_2 = R’,
dout_0 = Cb’, dout_1 = Cr, and dout_2 = Y’.

If the channels are in sequence, din_0 is first, then din_1, and din_2. If the channels are
in parallel, din_0 occupies the least significant bits of the word, din_1 the middle bits
and din_2 the most significant bits. For example, if there are 8 bits per sample and one
of the predefined conversions inputs B’G’R’, din_0 carries B’ in bits 0–7, din_1 carries
G’ in bits 8–15, and din_2 carries R’ in bits 16–23.

1 Predefined conversions only support unsigned input and output data. If signed input
or output data is selected, the predefined conversion produces incorrect results. When
using a predefined conversion, the precision of the constants must still be defined.
Predefined conversions are based on the input bits per pixel per color plane. If using
different input and output bits per pixel per color plane, the results should be scaled
by the correct number of binary places to compensate.

Constant Precision
The Color Space Converter MegaCore function requires fixed point types to be
defined for the constant coefficients and constant summands. The user entered
constants (in the white cells of the matrix in the MegaWizard interface) are rounded to
fit in the chosen fixed point type (these are shown in the purple cells of the matrix).

Calculation Precision
The Color Space Converter MegaCore function does not lose calculation precision
during the conversion. The calculation and result data types are derived from the
range of the input data type, the fixed point types of the constants, and the values of
the constants. If scaling is selected, the result data type is scaled up appropriately such
that precision is not lost.
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 5: Functional Descriptions 5–3
Color Space Converter
Result of Output Data Type Conversion
After the calculation, the fixed point type of the results must be converted to the
integer data type of the output. This conversion is performed in four stages, in the
following order:

1. Result Scaling. You can choose to scale up the results, increasing their range. This
is useful to quickly increase the color depth of the output. The available options
are a shift of the binary point right –16 to +16 places. This is implemented as a
simple shift operation so it does not require multipliers.

2. Removal of Fractional Bits. If any fractional bits exist, you can choose to remove
them. There are three methods:

■ Truncate to integer. Fractional bits are removed from the data. This is
equivalent to rounding towards negative infinity.

■ Round - Half up. Round up to the nearest integer. If the fractional bits equal
0.5, rounding is towards positive infinity.

■ Round - Half even. Round to the nearest integer. If the fractional bits equal 0.5,
rounding is towards the nearest even integer.

3. Conversion from Signed to Unsigned. If any negative numbers can exist in the
results and the output type is unsigned, you can choose how they are converted.
There are two methods:

■ Saturate to the minimum output value (constraining to range).

■ Replace negative numbers with their absolute positive value.

4. Constrain to Range. If any of the results are beyond the range specified by the
output data type (output guard bands, or if unspecified the minimum and
maximum values allowed by the output bits per pixel), logic that saturates the
results to the minimum and maximum output values is automatically added.

The Color Space Converter MegaCore function can process streams of pixel data of
the types shown inTable 5–1.

Table 5–1. Color Space Converter Avalon-ST Video Protocol Parameters

Parameter Value

Frame Width Read from control packets at run time.

Frame Height Read from control packets at run time.

Interlaced / Progressive Either.

Bits per Color Sample Number of bits per color sample selected in the MegaWizard interface.

Color Pattern (1)
For color planes in sequence:

For color planes in parallel:

Notes to Table 5–1:

(1) For channels in parallel, the top of the color pattern matrix represents the MSB of data and the bottom represents
the LSB. For details, refer to “Avalon-ST Video Protocol” on page 4–2.

210

0

1

2

July 2010 Altera Corporation Video and Image Processing Suite User Guide

5–4 Chapter 5: Functional Descriptions
Chroma Resampler
Chroma Resampler
The Chroma Resampler MegaCore function allows you to change between 4:4:4, 4:2:2
and 4:2:0 sampling rates where:

■ 4:4:4 specifies full resolution in planes 1, 2, and 3

■ 4:2:2 specifies full resolution in plane 1; half width resolution in planes 2 and 3

■ 4:2:0 specifies full resolution in plane 1; half width and height resolution in planes
2 and 3

All modes of the Chroma Resampler assume the chrominance (chroma) and
luminance (luma) samples are co-sited (that is, their values are sampled at the same
time). The horizontal resampling process supports nearest-neighbor and filtered
algorithms. The vertical resampling process only supports the nearest-neighbor
algorithm.

The Chroma Resampler MegaCore function can be configured to change image size at
run time using control packets.

Horizontal Resampling (4:2:2)
Figure 5–1 shows the location of samples in a co-sited 4:2:2 image.

Conversion from sampling rate 4:4:4 to 4:2:2 and back are scaling operations on the
chroma channels. This means that these operations are affected by some of the same
issues as the Scaler MegaCore function. However, because the scaling ratio is fixed as
2× up or 2× down, the Chroma Resampler MegaCore function is highly optimized for
these cases.

The Chroma Resampler MegaCore Function only supports the cosited form of
horizontal resampling—the form for 4:2:2 data in ITU Recommendation BT.601, MPEG-
2, and other standards.

f For more information about the ITU standard, refer to Recommendation ITU-R BT.601,
Encoding Parameters of Digital Television for Studios, 1992, International
Telecommunications Union, Geneva.

4:4:4 to 4:2:2
The nearest-neighbor algorithm is the simplest way to down-scale the chroma
channels. It works by simply discarding the Cb and Cr samples that occur on even
columns (assuming the first column is numbered 1). This algorithm is very fast and
cheap but, due to aliasing effects, it does not produce the best image quality.

Figure 5–1. Resampling 4.4.4 to a 4.2.2 Image

1 2 3 4

1

2

Sample No 5 6 7 8

++ ++ ++ ++

3

4

= Y’

+ = Cb

+ = Cr

++ = CbCr

++ = Y’CbCr

++ ++
++ ++
++ ++

++ ++
++ ++
++ ++
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 5: Functional Descriptions 5–5
Chroma Resampler
To get the best results when down-scaling, you can apply a filter to remove high-
frequency data and thus avoid possible aliasing. The filtered algorithm for horizontal
subsampling uses a 9-tap filter with a fixed set of coefficients.

The coefficients are based on a Lanczos-2 function (“Choosing and Loading
Coefficients” on page 5–17) that the Scaler MegaCore function uses. Their quantized
form is known as the Turkowski Decimator.

f For more information about the Turkowski Decimator, refer to Ken Turkowski. Graphics
Gems, chapter Filters for common resampling tasks, pages 147–165. Academic Press
Professional, Inc., San Diego, CA, USA, 1990.

The coefficients are fixed and approximate to powers of two, therefore they can be
implemented by bit-shifts and additions. This algorithm efficiently eliminates aliasing
in the chroma channels, and uses no memory or multipliers. However, it does use
more logic area than the nearest-neighbor algorithm.

4:2:2 to 4:4:4
The nearest-neighbor algorithm is the simplest way to up-scale the chroma channels.
It works by simply duplicating each incoming Cb and Cr sample to fill in the missing
data. This algorithm is very fast and cheap but it tends to produce sharp jagged edges
in the chroma channels.

The filtered algorithm uses the same method as the Scaler MegaCore function would
use for upscaling, that is a four-tap filter with Lanczos-2 coefficients. Use this filter
with a phase offset of 0 for the odd output columns (those with existing data) and an
offset of one-half for the even columns (those without direct input data). A filter with
phase offset 0 has no effect, so the function implements it as a pass-through filter. A
filter with phase offset of one-half interpolates the missing values and has fixed
coefficients that bit-shifts and additions implement.

This algorithm performs suitable upsampling and uses no memory or multipliers. It
uses more logic elements than the nearest-neighbor algorithm and is not the highest
quality available.

The best image quality for upsampling is obtained by using the filtered algorithm
with luma-adaptive mode enabled. This mode looks at the luma channel during
interpolation and uses this to detect edges. Edges in the luma channel make
appropriate phase-shifts in the interpolation coefficients for the chroma channels.

Figure 5–2 on page 5–6 shows 4:2:2 data at an edge transition. Without taking any
account of the luma, the interpolation to produce chroma values for sample 4 would
weight samples 3 and 5 equally. From the luma, you can see that sample 4 falls on an
the low side of an edge, so sample 5 is more significant than sample 3.

The luma-adaptive mode looks for such situations and chooses how to adjust the
interpolation filter. From phase 0, it can shift to -1/4, 0, or 1/4; from phase 1/2, it can
shift to 1/4, 1/2, or 3/4. This makes the interpolated chroma samples line up better
with edges in the luma channel and is particularly noticeable for bold synthetic edges
such as text.
July 2010 Altera Corporation Video and Image Processing Suite User Guide

5–6 Chapter 5: Functional Descriptions
Chroma Resampler
The luma-adaptive mode uses no memory or multipliers, but requires more logic
elements than the straightforward filtered algorithm.

Vertical Resampling (4:2:0)
The Chroma Resampler MegaCore function does not distinguish interlaced data with
its vertical resampling mode. It only supports the co-sited form of vertical resampling
shown in Figure 5–3.

For both upsampling and downsampling, the vertical resampling algorithm is fixed at
nearest-neighbor.

Vertical resampling does not use any multipliers. For upsampling, it uses four line
buffers, each buffer being half the width of the image. For downsampling it uses one
line buffer which is half the width of the image.

1 All input data samples must be in unsigned format. If the number of bits per pixel per
color plane is N, this means that each sample consists of N bits of data which are
interpreted as an unsigned binary number in the range [0, 2N – 1]. All output data
samples are also in the same unsigned format.

For more information about how non-video packets are transferred, refer to “Packet
Propagation” on page 4–11.

Figure 5–2. 4:2:2 Data at an Edge Transition

1 2 3 4 Sample No5 6 7

++ ++ ++ ++

= Y’

+ = Cb

+ = Cr

++ = CbCr

++ = Y’CbCr

Y’ Intensity

CbCr Color
Value ++ ++

++ ++

Figure 5–3. Resampling 4.4.4 to a 4.2.0 Image

1 2 3 4

1

2

Sample No 5 6 7 8

++ ++ ++ ++

3

4

= Y’

+ = Cb

+ = Cr

++ = CbCr

++ = Y’CbCr
++ ++++ ++
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 5: Functional Descriptions 5–7
Gamma Corrector
The Chroma Resampler MegaCore function can process streams of pixel data of the
types shown in Table 5–2.

Gamma Corrector
The Gamma Corrector MegaCore function provides a look-up table (LUT) accessed
through an Avalon-MM slave port. The gamma values can be entered in the LUT by
external hardware using this interface.

For information about using Avalon-MM slave interfaces for run-time control in the
Video and Image Processing Suite, refer to “Avalon-MM Slave Interfaces” on
page 4–17. For details of the control register maps, refer to Table 7–2 on page 7–2,
Table 7–3 on page 7–2, and Table 7–4 on page 7–2. For information about the
Avalon-MM interface signals, refer to Table 6–3 on page 6–2.

When dealing with image data with N bits per pixel per color plane, the address space
of the Avalon-MM slave port spans 2N + 2 registers where each register is N bits wide.

Registers 2 to 2N + 1 are the look-up values for the gamma correction function. Image
data with a value x will be mapped to whatever value is in the LUT at address x + 2.

The Gamma Corrector MegaCore function can process streams of pixel data of the
types shown in Table 5–3.

Table 5–2. Chroma Resampler Avalon-ST Video Protocol Parameters

Parameter Value

Frame Width Maximum frame width is specified in the MegaWizard interface, the actual value is read from
control packets.

Frame Height Maximum frame height is specified in the MegaWizard interface, the actual value is read from
control packets.

Interlaced /
Progressive Progressive.

Bits per Color Sample Number of bits per color sample selected in the MegaWizard interface.

Color Pattern

For 4:4:4 sequential data: For 4:2:2 sequential data:

For 4:2:0 sequential data: For 4:2:2 parallel data:

For 4:4:4 parallel data: For 4:2:0 parallel data:

CrCb Y CrCb YY

Cb
CrY Y

Cb Cr

Y Y

Y

Cb

Cr CrCb

Y

Y

Table 5–3. Gamma Corrector Avalon-ST Video Protocol Parameters (Part 1 of 2)

Parameter Value

Frame Width Read from control packets at run time.

Frame Height Read from control packets at run time.

Interlaced /
Progressive Either.
July 2010 Altera Corporation Video and Image Processing Suite User Guide

5–8 Chapter 5: Functional Descriptions
2D FIR Filter
2D FIR Filter
The 2D FIR Filter performs 2D convolution, using matrices of 3×3, 5×5, and 7×7
coefficients.

The MegaCore function retains full precision throughout the calculation, while
making efficient use of FPGA resources. With suitable coefficients, the MegaCore
function can perform several operations including, but not limited to sharpening,
smoothing and edge detection.

An output pixel is calculated from the multiplication of input pixels in a filter size
grid (kernel) by their corresponding coefficient in the filter.

These values are summed together. Prior to output, this result is scaled, has its
fractional bits removed, is converted to the desired output data type, and is
constrained to a specified range. The position of the output pixel corresponds to the
mid-point of the kernel. If the kernel runs over the edge of an image, the function uses
zeros for the out of range pixels.

The 2D FIR Filter allows its input, output and coefficient data types to be fully
defined. Constraints are 4 to 20 bits per pixel per color plane for input and output, and
up to 35 bits for coefficients.

The 2D FIR Filter supports symmetric coefficients. This reduces the number of
multipliers, resulting in smaller hardware. Coefficients can be set at compile time, or
changed at run time using an Avalon-MM slave interface.

Calculation Precision
The 2D FIR Filter does not lose calculation precision during the FIR calculation. The
calculation and result data types are derived from the range of input values (as
specified by the input data type, or input guard bands if provided), the coefficient
fixed point type and the coefficient values. If scaling is selected, then the result data
type is scaled up appropriately such that precision is not lost.

Coefficient Precision
The 2D FIR Filter requires a fixed point type to be defined for the coefficients. The
user-entered coefficients (shown as white boxes in the MegaWizard interface) are
rounded to fit in the chosen coefficient fixed point type (shown as purple boxes in the
MegaWizard interface).

Result to Output Data Type Conversion
After the calculation, the fixed point type of the results must be converted to the
integer data type of the output.

Bits per Color Sample Number of bits per color sample selected in the MegaWizard interface.

Color Pattern One, two or three channels in sequence or parallel. For example, if three channels
in sequence is selected where α, β, and γ can be any color plane:

Table 5–3. Gamma Corrector Avalon-ST Video Protocol Parameters (Part 2 of 2)

Parameter Value

γβα
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 5: Functional Descriptions 5–9
2D Median Filter
This is performed in four stages, in the following order:

1. Result Scaling. You can choose to scale up the results, increasing their range. This
is useful to quickly increase the color depth of the output. The available options
are a shift of the binary point right –16 to +16 places. This is implemented as a
simple shift operation so it does not require multipliers.

2. Removal of Fractional Bits. If any fractional bits exist, you can choose to remove
them.

There are three methods:

■ Truncate to integer. Fractional bits are removed from the data. This is
equivalent to rounding towards negative infinity.

■ Round - Half up. Round up to the nearest integer. If the fractional bits equal
0.5, rounding is towards positive infinity.

■ Round - Half even. Round to the nearest integer. If the fractional bits equal 0.5,
rounding is towards the nearest even integer.

3. Conversion from Signed to Unsigned. If any negative numbers can exist in the
results and the output type is unsigned, you can choose how they are converted.
There are two methods:

■ Saturate to the minimum output value (constraining to range).

■ Replace negative numbers with their absolute positive value.

4. Constrain to Range. If any of the results are beyond the range specified by the
output data type (output guard bands, or if unspecified the minimum and
maximum values allowed by the output bits per pixel), logic to saturate the results
to the minimum and maximum output values is automatically added.

The 2D FIR Filter MegaCore function can process streams of pixel data of the types
shown in Table 5–4.

2D Median Filter
The 2D Median Filter MegaCore function provides a means to perform 2D median
filtering operations using matrices of 3×3 or 5×5 kernels.

Each output pixel is the median of the input pixels found in a 3x3, 5x5, or 7×7 kernel
centered on the corresponding input pixel. Where this kernel runs over the edge of the
input image, zeros are filled in.

Table 5–4. 2D FIR Filter Avalon-ST Video Protocol Parameters

Parameter Value

Frame Width As selected in the MegaWizard interface.

Frame Height As selected in the MegaWizard interface.

Interlaced / Progressive Progressive.

Bits per Color Sample Number of bits per color sample selected in the MegaWizard interface.

Color Pattern One, two or three channels in sequence. For example, if three channels in
sequence is selected, where α, β, and γ can be any color plane:

γβα
July 2010 Altera Corporation Video and Image Processing Suite User Guide

5–10 Chapter 5: Functional Descriptions
Alpha Blending Mixer
Larger kernel sizes require many more comparisons to perform the median filtering
function and therefore require correspondingly large increases in the number of logic
elements. Larger sizes have a stronger effect, removing more noise but also potentially
removing more detail.

1 All input data samples must be in unsigned format. If the number of bits per pixel per
color plane is N, this means that each sample consists of N bits of data which are
interpreted as an unsigned binary number in the range [0, 2N – 1]. All output data
samples produced by the 2D Median Filter MegaCore function are also in the same
unsigned format.

The 2D Median Filter MegaCore function can process streams of pixel data of the
types shown in Table 5–5.

Alpha Blending Mixer
The Alpha Blending Mixer MegaCore function provides an efficient means to mix
together up to 12 image layers. The Alpha Blending Mixer provides support for both
picture-in-picture mixing and image blending with per pixel alpha support.

The location and size of each layer can be changed dynamically while the MegaCore
function is running, and individual layers can be switched on and off. This run-time
control is partly provided by an Avalon-MM slave port with registers for the location,
and on or off status of each foreground layer. The dimensions of each layer are then
specified by Avalon-ST Video control packets.

1 It is expected that each foreground layer fits in the boundaries of the background
layer.

Control data is read in two steps at the start of each frame and is buffered inside the
MegaCore function so that the control data can be updated during the frame
processing without unexpected side effects.

The first step occurs after all the non-image data packets of the background layer have
been processed and transmitted, and the core has received the header of an image
data packet of type 0 for the background. At this stage, the on/off status of each layer
is read. A layer can be disabled (0), active and displayed (1) or consumed but not
displayed (2). The maximum number of image layers mixed cannot be changed
dynamically and must be set in the MegaWizard interface for the Alpha Blending
Mixer.

Table 5–5. 2D Median Filter Avalon-ST Video Protocol Parameters

Parameter Value

Frame Width As selected in the MegaWizard interface.

Frame Height As selected in the MegaWizard interface.

Interlaced / Progressive Progressive.

Bits per Color Sample Number of bits per color sample selected in the MegaWizard interface.

Color Pattern One, two or three channels in sequence. For example, if three channels in
sequence is selected where α, β, and γ can be any color plane:

γβα
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 5: Functional Descriptions 5–11
Alpha Blending Mixer
Non-image data packets of each active foreground layer, displayed or consumed, are
processed in a sequential order, layer 1 first. Non-image data packets from the
background layer are integrally transmitted whereas non-image data packets from the
foreground layers are treated differently depending on their type. Control packets, of
type 15, are processed by the core to extract the width and height of each layer and are
discarded on the fly. Other packets, of type 1 to type 14, are propagated unchanged.

The second step corresponds to the usual behavior of other Video and Image
Processing MegaCore functions that have an Avalon-MM slave interface.

After the non-image data packets from the background layer and the foreground
layers have been processed and/or propagated, the MegaCore function waits for the
Go bit to be set to 1 before reading the top left position of each layer.

Consequently, the behavior of the Alpha Blending Mixer differs slightly from the
other Video and Image Processing MegaCore functions.

This behavior is illustrated by the following pseudo-code:

go = 0;
while (true)
{

status = 0;
read_non_image_data_packet_from background_layer();
read_control_first_pass(); // Check layer status

(disable/displayed/consumed)
for_each_layer layer_id
{

// process non-image data packets for displayed or consumed
layers

if (layer_id is not disabled)
{

handle_non_image_packet_from_foreground_layer(layer_id);
}

}
while (go != 1)

wait;
status = 1;
read_control_second_pass(); // Copies top-left coordinates to

internal registers
send_image_data_header();
process_frame();

}

For information about using Avalon-MM Slave interfaces for run-time control, refer to
“Avalon-MM Slave Interfaces” on page 4–17. For details of the control register maps,
refer to Table 7–6 on page 7–4. For information about the Avalon-MM interface
signals, refer to Table 6–6 on page 6–5.

Alpha Blending
When Alpha blending is on, the Avalon-ST input ports for the alpha channels expect
a video stream compliant with the Avalon-ST Video protocol. Alpha frames contain a
single color plane and are transmitted in video data packets. The first value in each
packet, transmitted while the startofpacket signal is high, contains the packet type
identifier 0. This condition holds true even when the width of the alpha channels data
ports is less than 4 bits wide. The last alpha value for the bottom-right pixel is
transmitted while the endofpacket signal is high.
July 2010 Altera Corporation Video and Image Processing Suite User Guide

5–12 Chapter 5: Functional Descriptions
Alpha Blending Mixer
It is not necessary to send control packets to the ports of the alpha channels. The
width and height of each alpha layer are assumed to match with the dimensions of the
corresponding foreground layer. The Alpha Blending Mixer MegaCore function
should recover cleanly if there is a mismatch although there may be throughput issues
at the system-level if erroneous pixels have to be discarded. All non-image data
packets (including control packets) are ignored and discarded just before the
processing of a frame starts.

The valid range of alpha coefficients is 0 to 1, where 1 represents full translucence, and
0 represents fully opaque.

For n-bit alpha values (RGBAn) coefficients range from 0 to 2n–1. The model interprets
(2n–1) as 1, and all other values as (Alpha value)/2n. For example, 8-bit alpha value
255 => 1, 254 => 254/256, 253 => 253/256 and so on.

The value of an output pixel ON, where N is the maximum number of layers, is
deduced from the following recursive formula:

ON = (1 – aN)pN + aNON – 1

O0 = p0

where pN is the input pixel for layer N and aN is the alpha pixel for layer N. Consumed
and disabled layers are skipped. The function does not use alpha values for the
background layer (a0) and you should tie the alpha0 port off to 0 when the core is
instantiated in SOPC Builder or the MegaWizard interface.

1 All input data samples must be in unsigned format. If the number of bits per pixel per
color plane is N, then each sample consists of N bits of data which are interpreted as
an unsigned binary number in the range [0, 2N – 1]. All output data samples produced
by the Alpha Blending Mixer MegaCore function are also in the same unsigned
format.

The Alpha Blending Mixer MegaCore function can process streams of pixel data of the
types shown in Table 5–6.

Table 5–6. Alpha Blending Mixer Avalon-ST Video Protocol Parameters

Parameter Value

Frame Width Run time controlled. (Maximum value specified in the MegaWizard interface.)

Frame Height Run time controlled. (Maximum value specified in the MegaWizard interface.)

Interlaced / Progressive
Progressive. Interlaced input streams are accepted but they are treated as progressive inputs.
Consequently, external logic is required to synchronize the input fields and prevent the mixing
of F0 fields with F1 fields.

Bits per Color Sample Number of bits per color sample selected in the MegaWizard interface (specified separately for
image data and alpha blending).

Color Pattern (din and
dout)

One, two or three channels in sequence or in parallel as selected in the
MegaWizard interface. For example, if three channels in sequence is selected
where α, β, and γ can be any color plane:

Color Pattern (alpha_in) A single color plane representing the alpha value for each pixel:

γβα

A

Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 5: Functional Descriptions 5–13
Scaler
Scaler
The Scaler MegaCore function provides a means to resize video streams. It supports
nearest neighbor, bilinear, bicubic, and polyphase scaling algorithms.

The Scaler MegaCore function can be configured to change the input resolution using
control packets. It can also be configured to change the output resolution and/or filter
coefficients at run time using an Avalon-MM Slave interface.

For information about using Avalon-MM slave interfaces for run-time control in the
Video and Image Processing Suite, refer to “Avalon-MM Slave Interfaces” on
page 4–17. For details of the register map for the Scaler MegaCore function, refer to
Table 7–7 on page 7–4.

In the formal definitions of the scaling algorithms, the width and height of the input
image are denoted win and hin respectively. The width and height of the output image
are denoted wout and hout. F is the function which returns an intensity value for a given
point on the input image and O is the function which returns an intensity value on the
output image.

Nearest Neighbor Algorithm
The nearest-neighbor algorithm that the scaler uses is the lowest quality method, and
uses the fewest resources. Jagged edges may be visible in the output image as no
blending takes place. However, this algorithm requires no DSP blocks, and uses fewer
logic elements than the other methods.

Scaling down requires no on-chip memory; scaling up requires one line buffer of the
same size as one line from the clipped input image, taking account of the number of
color planes being processed. For example, up scaling an image which is 100 pixels
wide and uses 8-bit data with 3 colors in sequence but is clipped at 80 pixels wide,
needs 8 × 3 × 80 = 1920 bits of memory. Similarly, if the 3 color planes are in parallel,
the memory requirement is still 1920 bits.

For each output pixel, the nearest-neighbor method picks the value of the nearest
input pixel to the correct input position. Formally, to find a value for an output pixel
located at (i, j), the nearest-neighbor method picks the value of the nearest input pixel
to ((i+0.5) win/wout, (j+0.5) hin/hout).

The 0.5 values in this equation come from considering the coordinates of an image
array to be on the lines of a 2D grid, but the pixels to be equally spaced between the
grid lines that is, at half values.

This equation gives an answer relative to the mid-point of the input pixel and 0.5
should be subtracted to translate from pixel positions to grid positions. However, this
0.5 would then be added again so that later truncation performs rounding to the
nearest integer. Therefore no change is needed. The calculation performed by the
scaler is equivalent to the following integer calculation:

O(i, j) = F((2 × win × i + win)/(2 × wout), (2 × hin × j + hin)/(2 × hout))

Bilinear Algorithm
The bilinear algorithm that the scaler uses is higher quality and more expensive than
the nearest-neighbor algorithm. The jaggedness of the nearest-neighbor method is
smoothed out, but at the expense of losing some sharpness on edges.
July 2010 Altera Corporation Video and Image Processing Suite User Guide

5–14 Chapter 5: Functional Descriptions
Scaler
Resource Usage
The bilinear algorithm uses four multipliers per channel in parallel. The size of each
multiplier is either the sum of the horizontal and vertical fraction bits plus two, or the
input data bit width, whichever is greater. For example, with four horizontal fraction
bits, three vertical fraction bits, and eight-bit input data, the multipliers are nine-bit.

With the same configuration but 10-bit input data, the multipliers are 10-bit. The
function uses two line buffers. As in nearest-neighbor mode, each of line buffers is the
size of a clipped line from the input image. The logic area is more than the nearest-
neighbor method.

Algorithmic Description
This section describes how the algorithmic operations of the bilinear scaler can be
modeled using a frame-based method. This does not reflect the implementation, but
allows the calculations to be presented concisely. To find a value for an output pixel
located at (i, j), we first calculate the corresponding location on the input:

ini = (i × win)/wout

inj = (j × hin)/hout

The integer solutions,(iniû, injû) to these equations provide the location of the top-
left corner of the four input pixels to be summed. The differences between ini, inj and
(iniû, injû) are a measure of the error in how far the top-left input pixel is from the
real-valued position that we want to read from. Call these errors erri and errj. The
precision of each error variable is determined by the number of fraction bits chosen by
the user, Bfh and Bfv, respectively.

Their values can be calculated as:

where % is the modulus operator and max(a, b) is a function that returns the
maximum of two values.

The sum is then weighted proportionally to these errors. Note that because the values
are measured from the top-left pixel, the weights for this pixel are one minus the error.

That is, in fixed-point precision: and

The sum is then:

Polyphase and Bicubic Algorithms
The polyphase and bicubic algorithms offer the best image quality, but use more
resources than the other modes of the scaler. They allow up scaling to be performed in
such a way as to preserve sharp edges, but without losing the smooth interpolation
effect on graduated areas.

erri
i win×()%wout() 2

Bfh×
max win wout,()

---=

errj
j hin×()%hout() 2

Bfv×
max hin hout,()

--=

2
Bfh erri– 2

Bfv errj–

O i j,() 2
Bfv Bfh+

× F ini inj,() 2
Bfh erri–() 2

Bfv errj–()××= + F ini 1 inj,+() erri 2
Bfv errj–()××

+ F ini inj, 1+() 2
Bfh erri–() errj×× + F ini 1 inj 1+,+() erri errj××
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 5: Functional Descriptions 5–15
Scaler
For down scaling, a long polyphase filter can reduce aliasing effects.

The bicubic and polyphase algorithms use different mathematics to derive their filter
coefficients, but the implementation of the bicubic algorithm is just the polyphase
algorithm with four vertical and four horizontal taps. In the following discussion, all
comments relating to the polyphase algorithm are applicable to the bicubic algorithm
assuming 4×4 taps.

Figure 5–4 on page 5–15 shows the flow of data through an instance of the scaler in
polyphase mode.

Data from multiple lines of the input image are assembled into line buffers–one for
each vertical tap. These data are then fed into parallel multipliers, before summation
and possible loss of precision. The results are gathered into registers–one for each
horizontal tap. These are again multiplied and summed before precision loss down to
the output data bit width.

1 The progress of data through the taps (line buffer and register delays) and the
coefficient values in the multiplication are controlled by logic that is not present in the
diagram. Refer to “Algorithmic Description” on page 5–17.

Figure 5–4. Polyphase Mode Scaler Block Diagram

Cv0

Bit Narrowing

Register Delay

Bit Narrowing

Line Buffer
Delay

Line Buffer
Delay

Register Delay

Ch0

Cv1 CvNv

Ch1 ChNh
July 2010 Altera Corporation Video and Image Processing Suite User Guide

5–16 Chapter 5: Functional Descriptions
Scaler
Resource Usage
Consider an instance of the polyphase scaler with Nv vertical taps and Nh horizontal
taps. Bdata is the bit width of the data samples.

Bv is the bit width of the vertical coefficients and is derived from the user parameters
for the vertical coefficients. It is equal to the sum of integer bits and fraction bits for
the vertical coefficients, plus one if coefficients are signed.

Bh is defined similarly for horizontal coefficients. Pv and Ph are the user-defined
number of vertical and horizontal phases for each coefficient set.

Cv is the number of vertical coefficient banks and Ch the number of horizontal
coefficient banks.

The total number of multipliers is Nv + Nh per channel in parallel. The width of each
vertical multiplier is max(Bdata,Bv). The width of each horizontal multiplier is the
maximum of the horizontal coefficient width, Bh, and the bit width of the horizontal
kernel, Bkh.

The bit width of the horizontal kernel determines the precision of the results of
vertical filtering and is user-configurable. Refer to the Number of bits to preserve
between vertical and horizontal filtering parameter in Table 3–9 on page 3–8.

The memory requirement is Nv line-buffers plus vertical and horizontal coefficient
banks. As in the nearest-neighbor and bilinear methods, each line buffer is the same
size as one line from the clipped input image.

The vertical coefficient banks are stored in memory that is Bv bits wide and Pv×Nv×Cv
words deep. The horizontal coefficient banks are stored in memory that is Bh×Nh bits
wide and Ph×Ch words deep. For each coefficient type, the Quartus II software maps
these appropriately to physical on-chip RAM or logic elements as constrained by the
width and depth requirements.

1 If the horizontal and vertical coefficients are identical, they are stored in the horizontal
memory (as defined above). If you turn on Share horizontal /vertical coefficients in
the MegaWizard interface this setting is forced even when the coefficients are loaded
at run time.

Using multiple coefficient banks allows double-buffering, fast swapping, or direct
writing to the Scaler’s coefficient memories. The coefficient bank to be read during
video data processing and the bank to be written by the Avalon-MM interface are
specified separately at runtime (Refer to the control register map in Table 7–7 on
page 7–4). This means that you can accomplish double-buffering by performing the
following steps:

1. Select two memory banks at compile time.

2. At start-up run time, select a bank to write into (for example 0) and write the
coefficients.

3. Set the chosen bank (0) to be the read bank for the Scaler, and start processing.

4. For subsequent changes, write to the unused bank (1) and swap the read and write
banks between frames.
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 5: Functional Descriptions 5–17
Scaler
Choosing to have more memory banks allows for each bank to contain coefficients for
a specific scaling ratio and for coefficient changes to be accomplished very quickly by
changing the read bank. Alternatively, for memory-sensitive applications, use a single
bank and coefficient writes have an immediate effect on data processing.

Algorithmic Description
This section describes how the algorithmic operations of the polyphase scaler can be
modelled using a frame-based method. This description shows how the filter kernel is
applied and how coefficients are loaded, but is not intended to indicate how the
hardware of the scaler is designed.

The filtering part of the polyphase scaler works by passing a windowed sinc function
over the input data. For up scaling, this function performs interpolation. For down
scaling, it acts as a low-pass filter to remove high-frequency data that would cause
aliasing in the smaller output image.

During the filtering process, the mid-point of the sinc function should be at the mid-
point of the pixel to output. This is achieved be applying a phase shift to the filtering
function.

If a polyphase filter has Nv vertical taps and Nh horizontal taps, the filter is a Nv × Nh
square filter.

Counting the coordinate space of the filter from the top-left corner, (0, 0), the mid-
point of the filter lies at ((Nv –1)/2, (Nh -1)/2). As in the bilinear case, to produce an
output pixel at (i, j), the mid-point of the kernel is placed at (iniû, injû) where ini and
inj are calculated using the algorithmic description equations on page 5–14. The
difference between the real and integer solutions to these equations determines the
position of the filter function during scaling.

The filter function is positioned over the real solution by adjusting the function’s
phase:

The results of the vertical filtering are then found by taking the set of coefficients from
phasej and applying them to each column in the square filter. Each of these Nh results is
then divided down to fit in the number of bits chosen for the horizontal kernel. The
horizontal kernel is applied to the coefficients from phasei, to produce a single value.
This value is then divided down to the output bit width before being written out as a
result.

Choosing and Loading Coefficients
The filter coefficients, which the polyphase mode of the scaler uses, may be specified
at compile time or at run time. At compile time, the coefficients can be either selected
from a set of Lanczos-windowed sinc functions, or loaded from a comma-separated
variable (CSV) file.

At run time they are specified by writing to the Avalon-MM slave control port
(Table 7–7 on page 7–4).

phasei
i win×()%wout() Ph×

max win wout,()
--=

phasej
j hin×()%hout() Pv×

max hin hout,()
---=
July 2010 Altera Corporation Video and Image Processing Suite User Guide

5–18 Chapter 5: Functional Descriptions
Scaler
When the coefficients are read at run time, they are checked once per frame and
double-buffered so that they can be updated as the MegaCore function processes
active data without causing corruption.

Figure 5–5 on page 5–18 shows how a 2-lobe Lanczos-windowed sinc function
(usually referred to as Lanczos 2) would be sampled for a 4-tap vertical filter.

1 The two lobes refer to the number of times the function changes direction on each side
of the central maxima, including the maxima itself.

The class of Lanczos N functions is defined as:

As can be seen in the figure, phase 0 centers the function over tap 1 on the x-axis. By
the equation above, this is the central tap of the filter. Further phases move the mid-
point of the function in 1/Pv increments towards tap 2. The filtering coefficients
applied in a 4-tap scaler for a particular phase are samples of where the function with
that phase crosses 0, 1, 2, 3 on the x-axis. The preset filtering functions are always
spread over the number of taps given. For example, Lanczos 2 is defined over the
range –2 to +2, but with 8 taps the coefficients are shifted and spread to cover 0 to 7.

Compile-time custom coefficients are loaded from a CSV file. One CSV file is specified
for vertical coefficients and one for horizontal coefficients. For N taps and P phases,
the file must contain N × P values. The values must be listed as N taps in order for
phase 0, N taps for phase 1, up to the Nth tap of the Pth phase. Values do not need to
be presented with each phase on a separate line.

Figure 5–5. Lanczos 2 Function at Various Phases

LanczosN x()
1

0

πx()sin
πx

-------------------- πx N⁄()sin
πx N⁄





=

x 0=

x 0 x N<∧≠
x N≥

0 1 2 3
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

phase(0)
phase(P

v
/2)

phase(P
v
−1)
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 5: Functional Descriptions 5–19
Scaler
The values must be pre-quantized in the range implied by the number of integer,
fraction and sign bits specified in the MegaWizard interface, and have their fraction
part multiplied out. The sum of any two coefficients in the same phase must also be in
the declared range. For example, if there is 1 integer bit, 7 fraction bits, and a sign bit,
each value and the sum of any two values should be in the range [–256, 255]
representing the range [-2, 1.9921875].

In summary, you can generate a set of coefficients for an N-tap, P-phase instance of
the Scaler as follows:

1. Define a function, f(x) over the domain [0, N – 1] under the assumption that
(N – 1)/2 is the mid-point of the filter.

2. For each tap t Î {0, 1, . . . ,N – 1} and for each phase p ∈ {0, 1/P, . . . , (P – 1/P)},
sample f(t – p).

3. Quantize each sample. Ideally, the sum of the quantized values for all phases
should be equal.

4. Either store these in a CSV file and copy them into the MegaWizard interface, or
load them at run time using the control interface.

Coefficients for the bicubic algorithm are calculated using Catmull-Rom splines to
interpolate between values in tap 1 and tap 2.

f For more information about the mathematics for Catmull-Rom splines refer to E
Catmull and R Rom. A class of local interpolating splines. Computer Aided Geometric Design,
pages 317–326, 1974.

The bicubic method does not use the preceding steps, but instead obtains weights for
each of the four taps to sample a cubic function that runs between tap 1 and tap 2 at a
position equal to the phase variable described previously. Consequently, the bicubic
coefficients are good for up scaling, but not for down scaling.

If the coefficients are symmetric and provided at compile time, then only half the
number of phases are stored. For N taps and P phases, an array, C[P][N], of quantized
coefficients is symmetric if:

for all p Œ [1, P – 1] and for all t Œ [0, N – 1], C[p][t] = C[P – p][N – 1 – t]

That is, phase 1 is phase P – 1 with the taps in reverse order, phase 2 is phase P – 2
reversed and so on. The predefined Lanczos and bicubic coefficient sets satisfy this
property. Selecting Symmetric for a coefficients set on the Coefficients page in the
MegaWizard interface, forces the coefficients to be symmetric.

Recommended Parameters
In polyphase mode, you must choose parameters for the Scaler MegaCore function
carefully to get the best image quality.

Incorrect parameters can cause a decrease in image quality even as the resource usage
increases. The parameters which have the largest effect are the number of taps and the
filter function chosen to provide the coefficients. The number of phases and number
of bits of precision are less important to the image quality.
July 2010 Altera Corporation Video and Image Processing Suite User Guide

5–20 Chapter 5: Functional Descriptions
Clipper
Table 5–7 summarizes some recommended values for parameters when using the
Scaler in polyphase mode.

The Scaler MegaCore function can process streams of pixel data of the types shown in
Table 5–8.

Clipper
The Clipper MegaCore function provides a means to select an active area from a video
stream and discard the remainder.

The active region can be specified by either providing the offsets from each border, or
by providing a point to be the top-left corner of the active region along with the
region's width and height.

The Clipper can deal with changing input resolutions by reading Avalon-ST Video
control packets. An optional Avalon-MM interface allows the clipping settings to be
changed at runtime.

The Clipper MegaCore function can process streams of pixel data of the types shown
in Table 5–9.

Table 5–7. Recommended Parameters for the Scaler MegaCore Function

Scaling Problem Taps Phases Precision Coefficients

Scaling up with any input/output resolution 4 16 Signed, 1 integer bit, 7 fraction bits Lanczos-2, or
Bicubic

Scaling down from M pixels to N pixels 16 Signed, 1 integer bit, 7 fraction bits Lanczos-2

Scaling down from M pixels to N pixels
(lower quality) 16 Signed, 1 integer bit, 7 fraction bits Lanczos-1

M 4×
N

M 2×
N

Table 5–8. Scaler Avalon-ST Video Protocol Parameters

Parameter Value

Frame Width Maximum frame width is specified in the MegaWizard interface, the actual value is read from
control packets.

Frame Height Maximum frame height is specified in the MegaWizard interface, the actual value is read from
control packets.

Interlaced /
Progressive Progressive.

Bits per Color Sample Number of bits per color sample selected in the MegaWizard interface.

Color Pattern
One, two or three channels in sequence or in parallel as selected in the
MegaWizard interface. For example, if three channels in sequence is selected
where α, β and, γ can be any color plane:

γβα

Table 5–9. Clipper Avalon-ST Video Protocol Parameters (Part 1 of 2)

Parameter Value

Frame Width Maximum frame width is specified in the MegaWizard interface, the actual value is read from
control packets.

Frame Height Maximum frame height is specified in the MegaWizard interface, the actual value is read from
control packets.
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 5: Functional Descriptions 5–21
Deinterlacer
Deinterlacer
The Deinterlacer MegaCore function converts interlaced video to progressive video
using bob, weave, or motion-adaptive methods. In addition, the Deinterlacer can
provide double or triple-buffering in external RAM. Buffering is required by the
motion-adaptive and weave methods and can be selected if desired when using a bob
method.

You can configure the Deinterlacer to produce one output frame for each input field or
to produce one output frame for each input frame (a pair of two fields). For example,
if the input video stream is NTSC video with 60 interlaced fields per second, the
former configuration outputs 60 frames per second but the latter outputs 30 frames
per second.

1 Producing one output frame for each input field should give smoother motion but
may also introduce visual artefacts on scrolling text or slow moving objects when
using the bob or motion adaptive algorithm.

When you select a frame buffering mode, the Deinterlacer output is calculated in
terms of the current field and possibly some preceding fields. For example, the bob
algorithm uses the current field, whereas the weave algorithm uses both the current
field and the one which was received immediately before it. When producing one
output frame for every input field, each field in the input frame takes a turn at being
the current field.

However, if one output frame is generated for each pair of interlaced fields then the
current field moves two fields through the input stream for each output frame. This
means that the current field is either always a F0 field (defined as a field which
contains the top line of the frame) or always a F1 field.

1 The Deinterlacer MegaCore function does not currently use the two synchronization
bits of the interlace nibble. (Refer to “Control Data Packets” on page 4–7.) When input
frame rate = output frame rate, the choice of F0 or F1 to be the current field has to be
made at compile time. The deinterlacing algorithm does not adapt itself to handle PsF
content.

Interlaced /
Progressive Either. Interlaced inputs are accepted but are treated as progressive inputs.

Bits per Color Sample Number of bits per color sample selected in the MegaWizard interface.

Color Pattern
Any combination of one, two, three, or four channels in each of sequence or
parallel. For example, if three channels in sequence is selected where α, β, and γ
can be any color plane:

Table 5–9. Clipper Avalon-ST Video Protocol Parameters (Part 2 of 2)

Parameter Value

γβα
July 2010 Altera Corporation Video and Image Processing Suite User Guide

5–22 Chapter 5: Functional Descriptions
Deinterlacer
Figure 5–6 shows a simple block diagram of the Deinterlacer MegaCore function with
frame buffering.

Deinterlacing Methods
The Deinterlacer MegaCore function supports four deinterlacing methods:

■ Bob with scanline duplication

■ Bob with scanline interpolation

■ Weave

■ Motion-adaptive

1 The Deinterlacer does not support interlaced streams where F0 fields are one line
higher than F1 fields in most of its parameterizations. (Bob with one output frame for
each input frame is the only exception.) Altera recommends using the Clipper
MegaCore function to feed the Deinterlacer with an interlaced video stream that it can
support.

Bob with Scanline Duplication
The bob with scanline duplication algorithm is the simplest and cheapest in terms of
logic. Output frames are produced by simply repeating every line in the current field
twice. The function uses only the current field, therefore if the output frame rate is the
same as the input frame rate, the function discards half of the input fields.

Bob with Scanline Interpolation
The bob with scanline interpolation algorithm has a slightly higher logic cost than bob
with scanline duplication but offers significantly better quality.

Figure 5–6. Deinterlacer Block Diagram with Buffering in External RAM

Note to Figure 5–6:

(1) There can be one or two Avalon-MM masters connected to the Memory Reader.

Memory
Writer

Memory
ReaderAvalon-ST Input

(din)
Avalon-ST Output
(dout)

DDR2

Arbitration Logic

Avalon-MM Master
(read_master)

Avalon-MM Master
(write_master)

Deinterlacing
Algorithm
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 5: Functional Descriptions 5–23
Deinterlacer
Output frames are produced by filling in the missing lines from the current field with
the linear interpolation of the lines above and below them. At the top of an F1 field or
the bottom of an F0 field there is only one line available so it is just duplicated. The
function only uses the current field, therefore if the output frame rate is the same as
the input frame rate, the function discards half of the input fields.

Weave
Weave deinterlacing creates an output frame by filling all of the missing lines in the
current field with lines from the previous field. This option gives good results for still
parts of an image but unpleasant artefacts in moving parts.

The weave algorithm requires external memory, so either double or triple-buffering
must be selected. This makes it significantly more expensive in logic elements and
external RAM bandwidth than either of the bob algorithms, if external buffering is not
otherwise required.

The results of the weave algorithm can sometimes be perfect, in the instance where
pairs of interlaced fields have been created from original progressive frames. Weave
simply stitches the frames back together and the results are the same as the original,
as long as output frame rate equal to input frame rate is selected and the correct pairs
of fields are put together. Usually progressive sources split each frame into a pair
consisting of an F0 field followed by an F1 field, so selecting F1 to be the current field
often yields the best results.

Motion-Adaptive
The Deinterlacer MegaCore function provides a simple motion-adaptive algorithm.
This is the most sophisticated of the algorithms provided but also the most expensive,
both in terms of logic area and external memory bandwidth requirement.

This algorithm avoids the weaknesses of bob and weave algorithms by using a form
of bob deinterlacing for moving areas of the image and weave style deinterlacing for
still areas.

1 If the input is 4:2:2 Y’CbCr subsampled data, the compatibility mode for 4:2:2 data
should be enabled to prevent the motion adaptive algorithm from introducing
chroma artefacts when using bob deinterlacing for moving regions.

Use the Motion bleed algorithm to prevent the motion value from falling too fast at a
specific pixel position. If the motion computed from the current and the previous
pixels is higher than the stored motion value, the stored motion value is irrelevant and
the function uses the computed motion in the blending algorithm, which becomes the
next stored motion value. However, if the computed motion value is lower than the
stored motion value, the following actions occur:

■ The blending algorithm uses the stored motion value

■ The next stored motion value is an average of the computed motion and of the
stored motion

This computed motion means that the motion that the blending algorithm uses climbs
up immediately, but takes about four or five frames to stabilize.
July 2010 Altera Corporation Video and Image Processing Suite User Guide

5–24 Chapter 5: Functional Descriptions
Deinterlacer
The motion-adaptive algorithm fills in the rows that are missing in the current field by
calculating a function of other pixels in the current field and the three preceding fields
as shown in the following sequence:

1. Pixels are collected from the current field and the three preceding it (the X denotes
the location of the desired output pixel) (Figure 5–7).

2. These pixels are assembled into two 3×3 groups of pixels. Figure 5–8shows the
minimum absolute difference of the two groups.

3. The minimum absolute difference value is normalized into the same range as the
input pixel data. If you select the Motion bleed algorithm, the function compares
the motion value with a recorded motion value for the same location in the
previous frame. If it is greater, the function keeps the new value; if the new value is
less than the stored value, the function uses the motion value that is the mean of
the two values. This action reduces unpleasant flickering artefacts but increases
the memory usage and memory bandwidth requirements.

4. Two pixels are selected for interpolation by examining the 3×3 group of pixels
from the more recent two fields for edges. If the function detects a diagonal edge,
the function selects two pixels from the current field that lie on the diagonal,
otherwise the function chooses the pixels directly above and below the output
pixel.

1 The 4:2:2 compatibility mode prevents incorrect interpolation of the chroma
samples along the diagonal edges.

5. The function uses a weighted mean of the interpolation pixels to calculate the
output pixel and the equivalent to the output pixel in the previous field with the
following equation:

Figure 5–7. Pixel Collection for the Motion-Adaptive Algorithm

Figure 5–8. Pixel Assembly for the Motion-Adaptive Algorithm

Current Field (C)C - 1C - 2C - 3

X

Previous Frame Current Frame

Motion = MAD

,

+ (1 - M) . Still PixelOutput Pixel = M .
2

Upper Pixel + Lower Pixel
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 5: Functional Descriptions 5–25
Deinterlacer
The motion-adaptive algorithm requires the buffering of two frames of data before it
can produce any output. The Deinterlacer always consumes the three first fields it
receives at start up and after a change of resolution without producing any output.

1 The weave and motion-adaptive algorithms cannot handle fields of different sizes (for
example, 244 lines for F0 and 243 lines for F1). Both implementations discard input
fields and do not produce an output frame until they receive a sufficient number of
consecutive fields with matching sizes.

Pass-Through Mode for Progressive Frames
In its default configuration, the Deinterlacer discards progressive frames. Change this
behavior if you want a datapath compatible with both progressive and interlaced
inputs and where run-time switching between the two types of input is allowed.
When the Deinterlacer lets progressive frames pass through, the deinterlacing
algorithm in use (bob, weave or motion-adaptive) propagates progressive frames
unchanged. The function maintains the double or triple-buffering function while
propagating progressive frames.

1 Enabling the propagation of progressive frames impacts memory usage in all the
parameterizations of the bob algorithm that use buffering.

Frame Buffering
The Deinterlacer MegaCore function also allows frame buffering in external RAM,
which you can configure at compile time. When using either of the two bob algorithm
subtypes, you can select no buffering, double-buffering, or triple-buffering. The
weave and motion-adaptive algorithms require some external frame buffering, and in
those cases only select double-buffering or triple-buffering.

When you chose no buffering, input pixels flow into the Deinterlacer through its
input port and, after some delay, calculated output pixels flow out through the output
port. When you select double-buffering, external RAM uses two frame buffers. Input
pixels flow through the input port and into one buffer while pixels are read from the
other buffer, processed and output.

When both the input and output sides have finished processing a frame, the buffers
swap roles so that the frame that the output can use the frame that you have just
input. You can overwrite the frame that the function uses to create the output with a
fresh input.

The motion-adaptive algorithm uses four fields to build a progressive output frame
and the output side has to read pixels from two frame buffers rather than one.
Consequently, the motion-adaptive algorithm actually uses three frame buffers in
external RAM when you select double-buffering. When the input and output sides
finish processing a frame, the output side exchanges its buffer containing the oldest
frame, frame n-2, with the frame it receives at the input side, frame n. It keeps frame n-
1 for one extra iteration because it uses it with frame n to produce the next output.

When triple-buffering is in use, external RAM usually uses three frame buffers. The
function uses four frame buffers when you select the motion-adaptive algorithm. At
any time, one buffer is in use by the input and one (two for the motion adaptive case)
is (are) in use by the output in the same way as the double-buffering case. The last
frame buffer is spare.
July 2010 Altera Corporation Video and Image Processing Suite User Guide

5–26 Chapter 5: Functional Descriptions
Deinterlacer
This configuration allows the input and output sides to swap asynchronously. When
the input finishes, it swaps with the spare frame if the spare frame contains data that
the output frame uses. Otherwise the function drops the frame which you have just
wrote and the function writes a fresh frame over the dropped frame.

When the output finishes, it also swaps with the spare frame and continues if the
spare frame contains fresh data from the input side. Otherwise it does not swap and
just repeats the last frame.

Triple-buffering allows simple frame rate conversion. For example, suppose you
connect the Deinterlacer’s input to a HDTV video stream in 1080i60 format and
connect its output i to a 1080p50 monitor. The input has 60 interlaced fields per
second, but the output tries to pull 50 progressive frames per second.

If you configure the Deinterlacer to output one frame for each input field, it produces
60 frames of output per second. If you enable triple-buffering, on average the function
drops one frame in six so that it produces 50 frames per second. If you chose one
frame output for every pair of fields input, the Deinterlacer produces 30 frames per
second output and triple-buffering leads to the function repeating two out of every
three frames on average.

When you select double or triple-buffering the Deinterlacer has two or more Avalon-
MM master ports. These must be connected to an external memory with enough space
for all of the frame buffers required. The amount of space varies depending on the
type of buffering and algorithm selected. An estimate of the required memory is
shown in the Deinterlacer MegaWizard interface.

If the external memory in your system runs at a different clock rate to the Deinterlacer
MegaCore function, you can turn on an option to use a separate clock for the Avalon-
MM master interfaces and use the memory clock to drive these interfaces.

To prevent memory read and write bursts from being spread across two adjacent
memory rows, you can turn on an option to align the initial address of each read and
write burst to a multiple of the burst target used for the read and write masters (or the
maximum of the read and write burst targets if using different values). Turning on
this option may have a negative impact on memory usage but increases memory
efficiency.

Frame Rate Conversion
When you select triple-buffering, the decision to drop and repeat frames is based on
the status of the spare buffer. Because the input and output sides are not tightly
synchronized, the behavior of the Deinterlacer is not completely deterministic and can
be affected by the burstiness of the data in the video system. This may cause
undesirable glitches or jerky motion in the video output.

By using a double-buffer and controlling the dropping/repeating behavior, the input
and output can be kept synchronized. For example, if the input has 60 interlaced
fields per second, but the output requires 50 progressive frames per second (fps),
setting the input frame rate to 30 fps and the output frame rate at 50 fps guarantees
that exactly one frame in six is dropped.
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 5: Functional Descriptions 5–27
Deinterlacer
To control the dropping/repeating behavior and to synchronize the input and output
sides, you must select double-buffering mode and turn on Run-time control for
locked frame rate conversion in the Parameter Settings tab of the MegaWizard
interface. The input and output rates can be selected and changed at run time.
Table 7–10 on page 7–6 describes the control register map.

The rate conversion algorithm is fully compatible with a progressive input stream
when the progressive passthrough mode is enabled but it cannot be enabled
simultaneously with the run-time override of the motion-adaptive algorithm.

Behavior When Unexpected Fields are Received
So far, the behavior of the Deinterlacer has been described assuming an uninterrupted
sequence of pairs of interlaced fields (F0, F1, F0, …) each having the same height.
Some video streams might not follow this rule and the Deinterlacer adapts its
behavior in such cases.

The dimensions and type of a field (progressive, interlaced F0, or interlaced F1) are
identified using information contained in Avalon-ST Video control packets. When a
field is received without control packets, its type is defined by the type of the previous
field. A field following a progressive field is assumed to be a progressive field and a
field following an interlaced F0 or F1 field is respectively assumed to be an interlaced
F1 or F0 field. If the first field received after reset is not preceded by a control packet, it
is assumed to be an interlaced field and the default initial field (F0 or F1) specified in
the MegaWizard interface is used.

When the weave or the motion-adaptive algorithms are used, a regular sequence of
pairs of fields is expected. Subsequent F0 fields received after an initial F0 field or
subsequent F1 fields received after an initial F1 field are immediately discarded.

When the bob algorithm is used and synchronization is done on a specific field (input
frame rate = output frame rate), the field that is constantly unused is always
discarded. The other field is used to build a progressive frame, unless it is dropped by
the triple-buffering algorithm.

When the bob algorithm is used and synchronization is done on both fields (input
field rate = output frame rate), the behavior is dependent on whether buffering is
used. If double or triple-buffering is used, the bob algorithm behaves like the weave
and motion-adaptive algorithms and a strict sequence of F0 and F1 fields is expected.
If two or more fields of the same type are received successively, the extra fields are
dropped. When buffering is not used, the bob algorithm always builds an output
frame for each interlaced input field received regardless of its type.

If passthrough mode for progressive frames has not been selected, the Deinterlacer
immediately discards progressive fields in all its parameterizations.

Handling of Avalon-ST Video Control Packets
When buffering is used, the Deinterlacer MegaCore function stores non-image data
packets in memory as described in “Buffering of Non-Image Data Packets in
Memory” on page 4–21.
July 2010 Altera Corporation Video and Image Processing Suite User Guide

5–28 Chapter 5: Functional Descriptions
Interlacer
Control packets and user packets are never repeated and they are not dropped or
truncated as long as memory space is sufficient. This behavior also applies for the
parameterizations that do not use buffering in external memory; incoming control
and user packets are passed through without modification.

In all parameterizations, the Deinterlacer MegaCore function generates a new and
updated control packet just before the processed image data packet. This packet
contains the correct frame height and the proper interlace flag so that the following
image data packet is interpreted correctly by following MegaCore functions.

1 The Deinterlacer uses 0010 and 0011 to encode interlacing values into the Avalon-ST
Video packets it generates. These flags mark the output as being progressive and
record information about the deinterlacing process. (Refer to Table 4–4 on page 4–8.)
The interlacing is encoded as 0000 when the Deinterlacer is passing a progressive
frame through.

The Deinterlacer MegaCore function can process streams of pixel data of the types
shown in Table 5–10.

Interlacer
The Interlacer MegaCore function converts progressive video to interlaced video. The
Interlacer generates an interlaced stream by dropping half the lines of each
progressive input frame. The Interlacer drops odd and even lines in successive order
to produce an alternating sequence of F0 and F1 fields. The output field rate is
consequently equal to the input frame rate.

The Interlacer MegaCore function handles changing input resolutions by reading the
content of Avalon-ST Video control packets. The Interlacer supports incoming streams
where the height of the progressive input frames is an odd value. In such a case, the
height of the output F0 fields are one line higher than the height of the output F1
fields.

Table 5–10. Deinterlacer Avalon-ST Video Protocol Parameters

Parameter Value

Frame Width Run time controlled. (Maximum value specified in the MegaWizard interface.)

Frame Height Run time controlled. (Maximum value specified in the MegaWizard interface.)

Interlaced /
Progressive Interlaced input, Progressive output (plus optional passthrough mode for progressive input).

Bits per Color Sample Number of bits per color sample selected in the MegaWizard interface.

Color Pattern

One, two or three channels in sequence or in parallel as selected in the
MegaWizard interface. For example, for three channels in sequence where α,
β, and γ can be any color plane:

When the compatibility mode for subsampled 4:2:2 Y’CbCr data is turned on,
the motion-adaptive deinterlacer expects the data as either 4:2:2 parallel data
(two channels in parallel) or 4:2:2 sequential data (two channels in sequence):

γβα

Cb Cr

Y Y

CrCb YY
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 5: Functional Descriptions 5–29
Frame Reader
When the input stream is already interlaced, the Interlacer either discards the
incoming interlaced fields or propagates the fields without modification, based on the
compile time parameters you specify. When Run-time control is on, you also can
deactivate the Interlacer at run-time to prevent the interlacing and propagate a
progressive video stream without modification. Table 7–12 on page 7–7 describes the
control register map for the Interlacer MegaCore function.

At start up or after a change of input resolution, the Interlacer begins the interlaced
output stream by dropping odd lines to construct a F0 field or by dropping even lines
to construct a F1 field, based on the compile time parameters you specify.
Alternatively, when Control packets override field selection is on and the interlace
nibble indicates that the progressive input previously went through a deinterlacer
(0000 or 0001), the Interlacer produces a F0 field if the interlace nibble is 0000 and a F1
field if the interlace nibble is 0001. For more information, refer to Table 4–4 on
page 4–8.

1 For most systems, turn off Control packets override field selection to guarantee the
Interlacer function produces a valid interlaced video output stream where F0 and F1
fields alternate in regular succession.

The Interlacer MegaCore function can process streams of pixel data of the types
shown in Table 5–11. The Interlacer does not support vertically subsampled video
streams. For example, 4:2:2 is supported but 4:2:0 is not.

Frame Reader
The Frame Reader reads video frames stored in external memory and outputs them
using the Avalon-ST Video protocol.

The Frame Reader has an Avalon Memory-Mapped Read Master port that reads data
from an external memory. The Frame Reader has an Avalon-ST source on which it
streams video data using the Avalon-ST Video protocol. The Frame Reader also has an
Avalon Slave port, which provides the MegaCore function with configuration data.

Table 5–11. Interlacer Avalon-ST Video Protocol Parameters

Parameter Value

Frame Width Run time controlled. (Maximum value specified in the MegaWizard interface.)

Frame Height Run time controlled. (Maximum value specified in the MegaWizard interface.)

Interlaced /
Progressive

Progressive, interlaced data is either discarded or propagated without change as selected in the
MegaWizard interface.

Bits per Color Sample Number of bits per color sample selected in the MegaWizard interface.

Color Pattern
One, two or three channels in sequence or in parallel as selected in the
MegaWizard interface. For example, for three channels in sequence where α,
β, and γ can be any color plane:

γβα
July 2010 Altera Corporation Video and Image Processing Suite User Guide

5–30 Chapter 5: Functional Descriptions
Frame Reader
Video frames are stored in external memory as raw video data (pixel values only).
Immediately before the Frame Reader MegaCore function reads video data from
external memory it generates a control packet and the header of a video data packet
on its Avalon-ST source. The video data from external memory is then streamed as the
payload of the video data packet. The content of the control data packet is set via the
Avalon Slave port. This process is repeated for every video frame read from external
memory.

The Frame Reader is configured during compilation to output a fixed number of color
planes in parallel, and a fixed number of bits per pixel per color plane. In terms of
Avalon-ST Video, these parameters describe the structure of one cycle of a color
pattern, also known as the single-cycle color pattern.

1 The Frame Reader is also configured with the number of channels in sequence, this
parameter does not contribute to the definition of the single-cycle color pattern.

To configure the Frame Reader to read a frame from memory, the Frame Reader must
know how many single-cycle color patterns make up the frame. If each single-cycle
color pattern represents a pixel, then the quantity is simply the number of pixels in the
frame. Otherwise, the quantity is the number of pixels in the frame, multiplied by the
number of single-cycle color patterns required to represent a pixel.

You must also specify the number of words the Frame Reader must read from
memory. The width of the word is the same as the Avalon-MM read Master port
width parameter. This width is configured during compilation. Each word can only
contain whole single-cycle color patterns. The words cannot contain partial single-
cycle color patterns. Any bits of the word that cannot fit another whole single-cycle
color pattern are not used.

Also, the Frame Reader must be configured with the starting address of the video
frame in memory, and the width, height, and interlaced values of the control data
packet to output before each video data packet.

The raw data that comprises a video frame in external memory is stored as a set of
single-cycle color patterns. In memory, the single-cycle color patterns must be
organized into word-sized sections. Each of these word-sized sections must contain as
many whole samples as possible, with no partial single-cycle color patterns. Unused
bits are in the most significant portion of the word-sized sections. Single-cycle color
patterns in the least significant bits are output first. The frame is read with words at
the starting address first.

Figure 5–9 shows the output pattern and memory organization for a Frame Reader
MegaCore, which is configured for:

■ 8 bits per pixel per color plane

■ 3 color planes in parallel

■ Master port width 64
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 5: Functional Descriptions 5–31
Frame Reader
Other Frame Reader parameters affect only resources and performance, or both. For
more information, refer to Table 5–12.

The Avalon Slave control port allows the specification of up to two memory locations,
each containing a video frame. Switching between these memory locations is
performed with a single register. This allows the Frame Reader MegaCore function to
read a series of frames from different memory addresses without having to set
multiple registers within the period of a single frame. This feature is useful when
reading very small frames, and helps to simplify control timing. To aid the timing of
control instructions and to monitor the core, the Frame Reader MegaCore function
also has an interrupt that fires once per video data packet output, which is the “frame
completed” interrupt.

The Avalon-ST Video parameters for the Frame Reader MegaCore function are shown
in Table 5–12.

Figure 5–9. Frame Reader Output Pattern and Memory Organization

Table 5–12. Avalon-ST Video Parameters (Part 1 of 2)

Parameter Value

Frame Width Set via the Avalon Memory Mapped Slave control port. Maximum value
specified in MegaWizard interface.

Frame Height Set via the Avalon Memory Mapped Slave control port. Maximum value
specified in MegaWizard interface.

Interlaced / Progressive Set via the Avalon Memory Mapped Slave control port, all values
supported.

Current Field (C)C - 1C - 2C - 3

X

28 292724 25 26

16 171512 13 14

4 530 1 2

34 353330 31 32

22 232118 19 20

10 1196 7 8

11

10 7

8

9 6

512

13

14

4

3 0

Start
Address

64-Bit Word

Frame Reader
MegaCore

Avalon Memory Map
Read Master Port

Avalon
Streaming Output

Single Cycle Color

External Memory

8 Bits

8 Bits

8 Bits

C
y
c
le

 4

C
y
c
le

 3

C
y
c
le

 2

C
y
c
le

 1

C
y
c
le

 0

1

2

July 2010 Altera Corporation Video and Image Processing Suite User Guide

5–32 Chapter 5: Functional Descriptions
Frame Buffer
Frame Buffer
The Frame Buffer MegaCore function buffers progressive or interlaced video fields in
external RAM. When frame dropping and frame repeating are not allowed, the Frame
Buffer provides a double-buffering function that can be useful to solve throughput
issues in the data path. When frame dropping and/or frame repeating are allowed,
the Frame Buffer provides a triple-buffering function and can be used to perform
simple frame rate conversion.

The Frame Buffer is built with two basic blocks: a writer which stores input pixels in
memory and a reader which retrieves video frames from the memory and outputs
them.

Figure 5–10 shows a simple block diagram of the Frame Buffer MegaCore function.

When double-buffering is in use, two frame buffers are used in external RAM. At any
time, one buffer is used by the writer component to store input pixels, while the
second buffer is locked by the reader component that reads the output pixels from the
memory.

When both the writer and the reader components have finished processing a frame,
the buffers are exchanged. The frame that has just been input can then be read back
from the memory and sent to the output, while the buffer that has just been used to
create the output can be overwritten with fresh input.

A double-buffer is typically used when the frame rate is the same both at the input
and at the output sides but the pixel rate is highly irregular at one or both sides.

Bits per Color Sample Specified in MegaWizard interface.

Color Pattern Up to four color planes in parallel, with up to three color planes in
sequence.

Table 5–12. Avalon-ST Video Parameters (Part 2 of 2)

Parameter Value

Figure 5–10. Frame Buffer Block Diagram

Memory
Writer

Memory
ReaderAvalon-ST Input

(din)
Avalon-ST Output
(dout)

DDR2

Arbitration Logic

Avalon-MM Master
(read_master)

Avalon-MM Master
(write_master)
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 5: Functional Descriptions 5–33
Frame Buffer
A double-buffer is often used when a frame has to be received or sent in a short period
of time compared with the overall frame rate. For example, after the Clipper
MegaCore function or before one of the foreground layers of the Alpha Blending
Mixer MegaCore function.

When triple-buffering is in use, three frame buffers are used in external RAM. As was
the case in double-buffering, the reader and the writer components are always locking
one buffer to respectively store input pixels to memory and read output pixels from
memory. The third frame buffer is a spare buffer that allows the input and the output
sides to swap buffers asynchronously. The spare buffer is considered clean if it
contains a fresh frame that has not been output, or dirty if it contains an old frame that
has already been sent by the reader component.

When the writer has finished storing a frame in memory, it swaps its buffer with the
spare buffer if the spare buffer is dirty. The buffer locked by the writer component
becomes the new spare buffer and is clean because it contains a fresh frame. If the
spare buffer is already clean when the writer has finished writing the current input
frame and if dropping frames is allowed, then the writer drops the frame that has just
been received and overwrites its buffer with the next incoming frame. If dropping
frames is not allowed, the writer component stalls until the reader component has
finished its frame and replaced the spare buffer with a dirty buffer.

Similarly, when the reader has finished reading and has output a frame from memory,
it swaps its buffer with the spare buffer if the spare buffer is clean. The buffer locked
by the reader component becomes the new spare buffer and is dirty because it
contains an old frame that has been sent previously. If the spare buffer is already dirty
when the reader has finished the current output frame and if repeating frames are
allowed, the reader immediately repeats the frame that has just been sent. If repeating
frames is not allowed, the reader component stalls until the writer component has
finished its frame and replaced the spare buffer with a “clean” buffer.

Triple-buffering therefore allows simple frame rate conversion to be performed when
the input and the output are pushing and pulling frames at different rates.

Locked Frame Rate Conversion
With the triple-buffering algorithm described previously, the decision to drop and
repeat frames is based on the status of the spare buffer. Because the input and output
sides are not tightly synchronized, the behavior of the Frame Buffer is not completely
deterministic and can be affected by the burstiness of the data in the video system.
This may cause undesirable glitches or jerky motion in the video output, especially if
the data path contains more than one triple buffer.

By controlling the dropping/repeating behavior, the input and output can be kept
synchronized. To control the dropping/repeating behavior and to synchronize the
input and output sides, you must select triple-buffering mode and turn on Run-time
control for locked frame rate conversion in the Parameter Settings tab of the
MegaWizard interface. The input and output rates can be selected and changed at run
time. Using the slave interface, it is also possible to enable or disable synchronization
at run time to switch between the user-controlled and flow-controlled triple-buffering
algorithms as necessary.

Table 7–14 on page 7–9 describes the control register maps for the Frame Buffer writer
component.
July 2010 Altera Corporation Video and Image Processing Suite User Guide

5–34 Chapter 5: Functional Descriptions
Frame Buffer
Interlaced Video Streams
In its default configuration the Frame Buffer MegaCore function does not differentiate
between interlaced and progressive fields. When interlaced fields are received, the
MegaCore function buffers, drops, or repeats fields independently. While this may be
appropriate, and perhaps even desired, behavior when using a double-buffer, it is
unlikely to provide the expected functionality when using a triple-buffer because
using a triple-buffer would result in an output stream with consecutive F0 or F1 fields.

When Support for interlaced streams is on, the Frame Buffer manages the two
interlaced fields of a frame as a single unit to drop and repeat fields in pairs. Using
Support for interlaced streams does not prevent the Frame Buffer from handling
progressive frames, and run-time switching between progressive and interlaced video
is supported.

The Frame Buffer typically groups the first interlaced field it receives with the second
one unless a synchronization is specified. If synchronizing on F1, the algorithm
groups each F1 field with the F0 field that precedes it. If a F1 field is received first, the
field is immediately discarded, even if dropping is not allowed.

For more information, refer to “Control Data Packets” on page 4–7.

Handling of Avalon-ST Video Control Packets
The Frame Buffer MegaCore function stores non-image data packets in memory as
described in “Buffering of Non-Image Data Packets in Memory” on page 4–21. User
packets are never repeated and they are not dropped as long as the memory space is
sufficient. Control packets are not stored in memory. Input control packets are
processed and discarded by the writer component and output control packets are
regenerated by the reader component.

When a frame is dropped by the writer, the non-image data packets that preceded it
are kept and sent with the next frame that is not dropped. When a frame is repeated
by the reader, it is repeated without the packets that preceded it.

The behavior of the Frame Buffer MegaCore function is not determined by the field
dimensions announced in Avalon-ST Video control packets and relies exclusively on
the startofpacket and endofpacket signals to delimit the frame boundaries. The
Frame Buffer can consequently handle and propagate mislabelled frames. This feature
can be used in a system where dropping frame is not an acceptable option. The
latency introduced during the buffering could provide enough time to correct the
invalid control packet.

Buffering and propagation of image data packets incompatible with preceding control
packets is an undesired behavior in most systems. Dropping invalid frames is often a
convenient and acceptable way of dealing with glitches from the video input and the
Frame Buffer can be parameterized to drop all mislabelled fields or frames at compile
time. Enabling flow-controlled frame repetition and turning on this option can
guarantee that the reader component keeps on repeating the last valid received frame,
that is, freezes the output, when the input drops.
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 5: Functional Descriptions 5–35
Clocked Video Input
The Frame Buffer MegaCore function can process streams of pixel data of the type
shown in Table 5–13 on page 5–35.

Clocked Video Input
The Clocked Video Input MegaCore function converts from clocked video formats
(such as BT656, BT1120, and DVI) to Avalon-ST Video.

The Clocked Video Input strips the incoming clocked video of horizontal and vertical
blanking, leaving only active picture data, and using this data with the horizontal and
vertical synchronization information creates the necessary Avalon-ST Video control
and active picture packets. No conversion is done to the active picture data, the color
plane information remains the same as in the clocked video format.

The Clocked Video Input converts clocked video to the flow controlled Avalon-ST
Video protocol. It also provides clock crossing capabilities to allow video formats
running at different frequencies to enter the system.

In addition, the Clocked Video Input provides a number of status registers that
provide feedback on the format of video entering the system (resolution, and
interlaced or progressive mode) and a status interrupt that can be used to determine
when the video format changes or is disconnected.

Video Formats
The Clocked Video Input MegaCore function accepts the following clocked video
formats:

■ Video with synchronization information embedded in the data (in BT656 or
BT1120 format)

■ Video with separate synchronization (H sync, Vsync) signals

Embedded Synchronization Format
The BT656 and BT1120 formats use time reference signal (TRS) codes in the video data
to mark the places where synchronization information is inserted in the data.

Table 5–13. Frame Buffer Avalon-ST Video Protocol Parameters

Parameter Value

Frame Width Run time controlled. Maximum value selected in the MegaWizard interface.

Frame Height Run time controlled. Maximum value selected in the MegaWizard interface.

Interlaced /
Progressive Progressive, although interlaced data can be accepted in some cases.

Bits per Color Sample Number of bits per color sample selected in the MegaWizard interface.

Color Pattern
Any combination of one, two, three, or four channels in each of sequence or
parallel. For example, for three channels in sequence where α, β, and γ can be any
color plane:

γβα
July 2010 Altera Corporation Video and Image Processing Suite User Guide

5–36 Chapter 5: Functional Descriptions
Clocked Video Input
These codes are made up of values that are not present in the video portion of the data
and take the format shown in Figure 5–11.

The Clocked Video Input MegaCore function supports both 8 and 10-bit TRS and XYZ
words. When in 10-bit mode the bottom 2 bits of the TRS and XYZ words are ignored
to allow easy transition from an 8-bit system.

The XYZ word contains the synchronization information and the relevant bits of it's
format are shown in Table 5–14.

For the embedded synchronization format, the vid_datavalid signal indicates a valid
BT656 or BT1120 sample as shown in Figure 5–12. The Clocked Video Input MegaCore
function only reads the vid_data signal when vid_datavalid is 1.

The Clocked Video Input MegaCore function extracts any ancillary packets from the Y
channel during the vertical blanking. Ancillary packets are not extracted from the
horizontal blanking. The extracted packets are output via the Clocked Video Input’s
Avalon-ST output with a packet type of 13 (0xD). For information about Avalon-ST
Video ancillary data packets, refer to “Ancillary Data Packets” on page 4–10.

Figure 5–11. Time Reference Signal Format

Table 5–14. XYZ Word Format

10-bit 8-bit Description

Unused [5:0] [3:0] These bits are not inspected by the Clocked Video Input MegaCore
function.

H (sync) 6 4 When 1, the video is in a horizontal blanking period.

V (sync) 7 5 When 1, the video is in a vertical blanking period.

F (field) 8 6 When 1, the video is interlaced and in field 1. When 0, the video is
either progressive or interlaced and in field 0.

Unused 9 7 These bits are not inspected by the Clocked Video Input MegaCore
function.

Figure 5–12. vid_datavalid Timing

3FF XYZ00

TRS (10bit)

D0 D1vid_data

vid_datavalid
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 5: Functional Descriptions 5–37
Clocked Video Input
Separate Synchronization Format
The separate synchronization format uses separate signals to indicate the blanking,
sync, and field information. For this format, the vid_datavalid signal behaves
slightly differently from in embedded synchronization format.

The Clocked Video Input MegaCore function only reads vid_data when
vid_datavalid is high (as in the embedded synchronization format) but it treats each
read sample as active picture data.

Table 5–15 describes the signals and Figure 5–13 shows the timing.

Video Locked Signal
The vid_locked signal indicates that the clocked video stream is active. When the
signal has a value of 1, the Clocked Video Input MegaCore function takes the input
clocked video signals as valid and reads and processes them as normal.

When the signal has a value of 0 (if for example the video cable is disconnected or the
video interface is not receiving a signal) the Clocked Video Input MegaCore function
takes the input clocked video signals as invalid and does not process them.

If the vid_locked signal goes invalid while a frame of video is being processed, the
Clocked Video Input MegaCore function ends the frame of video early.

Table 5–15. Clocked Video Input Signals for Separate Synchronization Format Video

Signal Name Description

vid_datavalid
When asserted the video is in an active picture period (not horizontal or
vertical blanking).

vid_h_sync When 1, the video is in a horizontal synchronization period.

vid_v_sync When 1, the video is in a vertical synchronization period.

vid_f
When 1, the video is interlaced and in field 1. When 0, the video is either
progressive or interlaced and in field 0.

Figure 5–13. Separate Synchronization Signals Timing

vid_datavalid

D0 DNvid_data D1 Dn+2Dn+1

vid_v_sync

vid_h_sync

vid_f
July 2010 Altera Corporation Video and Image Processing Suite User Guide

5–38 Chapter 5: Functional Descriptions
Clocked Video Input
Control Port
If you turn on Use control port in the MegaWizard interface for the Clocked Video
Input, its Avalon-ST Video output can be controlled using the Avalon-MM slave
control port.

Initially, the MegaCore function is disabled and does not output any data. However, it
still detects the format of the clocked video input and raises interrupts.

The sequence for starting the output of the MegaCore function is as follows:

1. Write a 1 to Control register bit 0.

2. Read Status register bit 0. When this is a 1, the MegaCore function outputs data.
This occurs on the next start of frame or field that matches the setting of the Field
order in the MegaWizard interface.

The sequence for stopping the output of the MegaCore function is as follows:

1. Write a 0 to Control register bit 0.

2. Read Status register bit 0. When this is a 0, the MegaCore function has stopped
data output. This occurs on the next end of frame or field that matches the setting
of the Field order in the MegaWizard interface.

The starting and stopping of the MegaCore function is synchronized to a frame or
field boundary.

Table 5–16 shows the output of the MegaCore function with the different Field order
settings.

Format Detection
The Clocked Video Input MegaCore function detects the format of the incoming
clocked video and uses it to create the Avalon-ST Video control packet. It also
provides this information in a set of registers.

The MegaCore function can detect the following different aspects of the incoming
video stream:

■ Picture width (in samples)—The MegaCore function counts the total number of
samples per line, and the number of samples in the active picture period. One full
line of video is required before the MegaCore function can determine the width.

Table 5–16. Synchronization Settings

Video Format Field Order Output

Interlaced F1 first Start, F1, F0, ..., F1, F0, Stop

Interlaced F0 first Start, F0, F1, ..., F0, F1, Stop

Interlaced Any field first Start, F0 or F1, ... F0 or F1, Stop

Progressive F1 first No output

Progressive F0 first Start, F0, F0, ..., F0, F0, Stop

Progressive Any field first Start, F0, F0, ..., F0, F0, Stop
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 5: Functional Descriptions 5–39
Clocked Video Input
■ Picture height (in lines)—The MegaCore function counts the total number of lines
per frame or field, and the number of lines in the active picture period. One full
frame or field of video is required before the MegaCore function can determine the
height.

■ Interlaced/Progressive—The MegaCore function detects whether the incoming
video is interlaced or progressive. If it is interlaced, separate height values are
stored for both fields. One full frame or field of video and a number of lines from a
second frame or field are required before the MegaCore function can determine
whether the source is interlaced or progressive.

■ Standard—The MegaCore function provides the contents of the vid_std bus via
the Standard register. When connected to the rx_std signal of a SDI MegaCore
function, for example, these values can be used to report the standard (SD, HD, or
3G) of the incoming video.

If the MegaCore function has not yet determined the format of the incoming video, it
uses the values specified under the Avalon-ST Video Initial/Default Control Packet
section in the MegaWizard interface.

After determining an aspect of the incoming videos format, the MegaCore function
enters the value in the respective register, sets the registers valid bit in the Status
register, and triggers the respective interrupts.

Table 5–17 shows the sequence for a 1080i incoming video stream.

Interrupts
The Clocked Video Input MegaCore function outputs a single interrupt line which is
the OR of the following internal interrupts:

■ The status update interrupt—Triggers when a change of resolution in the
incoming video is detected.

Table 5–17. Resolution Detection Sequence for a 1080i Incoming Video Stream

Status Interrupt
Active
Sample
Count

F0
Active
Line

Count

F1
Active
Line

Count

Total
Sample
Count

F0 Total
Sample
Count

F1 Total
Sample
Count

Description

00000000000 000 0 0 0 0 0 0 Start of incoming video.

00000101000 000 1,920 0 0 2,200 0 0 End of first line of video.

00100101000 100 1,920 0 0 2,200 0 0
Stable bit set and interrupt fired
—Two of last three lines had
the same sample count.

00100111000 100 1,920 540 0 2,200 563 0 End of first field of video.

00110111000 100 1,920 540 0 2,200 563 0 Interlaced bit set—Start of
second field of video.

00111111000 100 1,920 540 540 2,200 563 562 End of second field of video.

10111111000 110 1,920 540 540 2,200 563 562 Resolution valid bit set and
interrupt fired.
July 2010 Altera Corporation Video and Image Processing Suite User Guide

5–40 Chapter 5: Functional Descriptions
Clocked Video Input
■ Stable video interrupt—Triggers when the incoming video is detected as stable
(has a consistent sample length in two of the last three lines) or unstable (if, for
example, the video cable is removed). The incoming video is always detected as
unstable when the vid_locked signal is low.

Both interrupts can be independently enabled using bits [2:1] of the Control register.
Their values can be read using bits [2:1] of the Interrupt register and a write of 1 to
either of those bits clears the respective interrupt.

Generator Lock
Generator lock (Genlock) is the technique for locking the timing of video outputs to a
reference source. Sources that are locked to the same reference can be switched
between cleanly, on a frame boundary. The Genlock functionality is enabled using the
Control register.

The Clocked Video Input MegaCore function provides some functions to facilitate
Genlock. The MegaCore function can be configured to output, via the refclk_div
signal, a divided down version of its vid_clk (refclk) aligned to the start of frame
(SOF). By setting the divide down value to the length in samples of a video line, the
refclk_div signal can be configured to output a horizontal reference which a phase-
locked loop (PLL) can align its output clock to. By tracking changes in the refclk_div
signal, the PLL can then ensure that its output clock is locked to the incoming video
clock. Figure 5–14 shows an example configuration.

Figure 5–14. Genlock Example Configuration

524 0

0 1 0 11010SubSample 0

20 1Sample

Cb Y Cr YYCrYCb Cb

856 857

V Sync

Data

Line

SOF
(SOFSubSample = 0,

SOFSample = 0, SOFLine = 0)

F

SOF
(SOFSubSample = 1,

SOFSample = 1, SOFLine = 1)
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 5: Functional Descriptions 5–41
Clocked Video Input
The SOF signal can be set to any position within the incoming video frame. The
registers used to configure the SOF signal are measured from the rising edge of the F0
vertical sync. Due to registering inside the Clocked Video Input MegaCore function
setting the SOF Sample and SOF Line registers to 0 results in a SOF signal rising edge
six cycles after the rising edge of the vsync, in embedded synchronization mode, and
three cycles after the rising edge of the vsync, in separate synchronization mode. A
start of frame is indicated by a rising edge on the SOF signal (0 to 1).

An example of how to set up the Clocked Video Input to output an SOF signal aligned
to the incoming video synchronization (in embedded synchronization mode) is
included in Table 5–18.

A Clocked Video Output MegaCore function can take in the locked PLL clock and the
SOF signal and align the output video to these signals. This produces an output video
frame that is synchronized to the incoming video frame. For more information, refer
to the description of the Clocked Video Output MegaCore function.

Overflow
Moving between the domain of clocked video and the flow controlled world of
Avalon-ST Video can cause problems if the flow controlled world does not accept data
at a rate fast enough to satisfy the demands of the incoming clocked video.

The Clocked Video Input MegaCore function contains a FIFO that, when set to a large
enough value, can accommodate any bursts in the flow data, as long as the input rate
of the upstream Avalon-ST Video components is equal to or higher than that of the
incoming clocked video.

If this is not the case, the FIFO overflows. If overflow occurs, the MegaCore function
outputs an early endofpacket signal to complete the current frame. It then waits for
the next start of frame (or field) before re-synchronizing to the incoming clocked
video and beginning to output data again.

The overflow is recorded in bit [9] of the Status register. This bit is sticky, and if an
overflow occurs, stays at 1 until the bit is cleared by writing a 0 to it.

In addition to the overflow bit, the current level of the FIFO can be read from the Used
Words register.

Timing Constraints
To constrain the Clocked Video Output MegaCore function correctly, add the
following file to your Quartus II project:

 <install_dir>\ip\clocked_video_input\lib\alt_vip_cvi.sdc

Table 5–18. Example of Clocked Video Input To Output an SOF Signal

Format SOF Sample Register SOF Line Register Refclk Divider Register

720p60 1644 << 2 749 1649

1080i60 2194 << 2 1124 2199

NTSC 856 << 2 524 857
July 2010 Altera Corporation Video and Image Processing Suite User Guide

5–42 Chapter 5: Functional Descriptions
Clocked Video Input
When you apply the SDC file, you may see some warning messages in a format as
follows:

■ Warning: At least one of the filters had some problems and could not be matched.

■ Warning: * could not be matched with a keeper.

These warnings are expected, because in certain configurations the Quartus II
software optimizes unused registers and they no longer remain in your design.

Active Format Description Extractor
The AFD Extractor is an example of how to write a core to handle ancillary packets. It
is available in the following directory:

<install_dir>\ip\clocked_video_output\lib\afd_example

When the output of the Clocked Video Input MegaCore function is connected to the
input of the AFD Extractor, the AFD Extractor removes any ancillary data packets
from the stream and checks the DID and secondary DID (SDID) of the ancillary
packets contained within each ancillary data packet. If the packet is an AFD packet
(DID = 0x41, SDID = 0x5), the extractor places the contents of the ancillary packet into
the AFD Extractor register map.

f Refer to the SMPTE 2016-1-2007 standard for a more detailed description of the AFD
codes.

Table 5–19 shows the AFD Extractor register map.

Table 5–19. AFD Extractor Register Map (Part 1 of 2)

Address Register Description

0 Control
When bit 0 is 0, the core discards all packets.

When bit 0 is 1, the core passes through all non-
ancillary packets.

1 Reserved.

2 Interrupt
When bit 1 is 1, a change to the AFD data has been
detected and the interrupt has been set. Writing a 1 to
bit 1 clears the interrupt.

3 AFD Bits 0-3 contain the active format description code.

4 AR Bit 0 contains the aspect ratio code.

5 Bar data flags

When AFD is 0000 or 0100, bits 0-3 describe the
contents of bar data value 1 and bar data value 2.

When AFD is 0011, bar data value 1 is the pixel number
end of the left bar and bar data value 2 is the pixel
number start of the right bar.

When AFD is 1100, bar data value 1 is the line number
end of top bar and bar data value 2 is the line number
start of bottom bar.

6 Bar data value 1 Bits 0-15 contain bar data value 1
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 5: Functional Descriptions 5–43
Clocked Video Output
Clocked Video Output
The Clocked Video Output MegaCore function converts Avalon-ST Video to clocked
video formats (such as BT656, BT1120, and DVI). It formats Avalon-ST Video into
clocked video by inserting horizontal and vertical blanking and generating horizontal
and vertical synchronization information using the Avalon-ST Video control and
active picture packets.

No conversion is done to the active picture data, the color plane information remains
the same as in the Avalon-ST Video format.

The Clocked Video Output MegaCore function converts data from the flow controlled
Avalon-ST Video protocol to clocked video. It also provides clock crossing capabilities
to allow video formats running at different frequencies to be output from the system.

In addition, this MegaCore function provides a number of configuration registers that
control the format of video leaving the system (blanking period size, synchronization
length, and interlaced or progressive mode) and a status interrupt that can be used to
determine when the video format changes.

Video Formats
The Clocked Video Output MegaCore function creates the following clocked video
formats:

■ Video with synchronization information embedded in the data (in BT656 or
BT1120 format)

■ Video with separate synchronization (h sync, v sync) signals

The Clocked Video Output MegaCore function creates a video frame consisting of
horizontal and vertical blanking (containing syncs) and areas of active picture (taken
from the Avalon-ST Video input).

7 Bar data value 2 Bits 0-15 contain bar data value 2

8 AFD valid

When bit 0 is 0, an AFD packet is not present for each
image packet.

When bit 0 is 1, an AFD packet is present for each
image packet.

Table 5–19. AFD Extractor Register Map (Part 2 of 2)

Address Register Description
July 2010 Altera Corporation Video and Image Processing Suite User Guide

5–44 Chapter 5: Functional Descriptions
Clocked Video Output
The format of the video frame is shown in Figure 5–15 for progressive and Figure 5–16
on page 5–45 for interlaced.

Figure 5–15. Progressive Frame Format

Vertical Blanking

F0 Active Picture

H
or

iz
on

ta
l B

la
nk

in
g

Horizontal Sync

V
er

tic
al

 S
yn

c

Width

H
ei

gh
t

Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 5: Functional Descriptions 5–45
Clocked Video Output
Embedded Synchronization Format
For the embedded synchronization format, the MegaCore function inserts the
horizontal and vertical syncs and field into the data stream during the horizontal
blanking period (Table 5–14 on page 5–36).

A sample is output for each clock cycle on the vid_data bus.

There are two extra signals that are only used when connecting to the SDI MegaCore
function. They are vid_trs, which is high during the 3FF sample of the TRS, and
vid_ln, which outputs the current SDI line number. These are used by the SDI
MegaCore function to insert line numbers and cyclical redundancy checks (CRC) into
the SDI stream as specified in the 1.5 Gbps HD SDI and 3 Gbps SDI standards.

The Clocked Video Output MegaCore inserts any ancillary packets (packets with a
type of 13 or 0xD) into the output video during the vertical blanking. For information
about Avalon-ST Video ancillary data packets, refer to “Ancillary Data Packets” on
page 4–10. The Clocked Video Output MegaCore begins inserting the packets on the
lines specified in its parameters or mode registers (ModeN Ancillary Line and ModeN
F0 Ancillary Line). The Clocked Video Output MegaCore stops inserting the packets
at the end of the vertical blanking.

Figure 5–16. Interlaced Frame Format

Vertical Blanking

F0 Active Picture

H
or

iz
on

ta
l B

la
nk

in
g

Horizontal Sync

V
er

tic
al

 S
yn

c

F0 Vertical Blanking

F1 Active Picture

Width

H
ei

gh
t

Width

H
ei

gh
t

F
ie

ld
July 2010 Altera Corporation Video and Image Processing Suite User Guide

5–46 Chapter 5: Functional Descriptions
Clocked Video Output
The Clocked Video Input MegaCore function extracts any ancillary packets from the Y
channel during the vertical blanking. Ancillary packets are not extracted from the
horizontal blanking. The extracted packets are output via the Clocked Video Input’s
Avalon-ST output with a packet type of 13 (0xD).

Separate Synchronization Format
For the separate synchronization format, the MegaCore function outputs horizontal
and vertical syncs and field information via their own signals.

A sample is output for each clock cycle on the vid_data bus. The vid_datavalid
signal is used to indicate when the vid_data video output is in an active picture
period of the frame.

Table 5–20 describes five extra signals for separate synchronization formats.

Control Port
If you turn on Use control port in the MegaWizard interface for the Clocked Video
Output, it can be controlled using the Avalon-MM slave control port. Initially, the
MegaCore function is disabled and does not output any video. However, it still
accepts data on the Avalon-ST Video interface for as long as it has space in its input
FIFO.

The sequence for starting the output of the MegaCore function is as follows:

1. Write a 1 to Control register bit 0.

2. Read Status register bit 0. When this is a 1, the function outputs video.

The sequence for stopping the output of the MegaCore function is as follows:

1. Write a 0 to Control register bit 0.

2. Read Status register bit 0. When this is a 0, the function has stopped video output.
This occurs at the end of the next frame or field boundary.

The starting and stopping of the MegaCore function is synchronized to a frame or
field boundary.

Video Modes
The video frame is described using the mode registers that are accessed via the
Avalon-MM control port. If you turn off Use control port in the MegaWizard interface
for the Clocked Video Output, then the output video format always has the format
specified in the MegaWizard interface.

Table 5–20. Clocked Video Output Signals for Separate Synchronization Format Video

Signal Name Description

vid_h_sync 1 during the horizontal synchronization period.

vid_v_sync 1 during the vertical synchronization period.

vid_f
When interlaced data is output, this is a 1 when F1 is being output and a 0
when F0 is being output. During progressive data it is always 0.

vid_h 1 during the horizontal blanking period.

vid_v 1 during the vertical blanking period.
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 5: Functional Descriptions 5–47
Clocked Video Output
The MegaCore function can be configured to support between 1 to 14 different modes
and each mode has a bank of registers that describe the output frame. When the
MegaCore function receives a new control packet on the Avalon-ST Video input, it
searches the mode registers for a mode that is valid and has a field width and height
that matches the width and height in the control packet. The register Video Mode
Match shows the selected mode. When found, it restarts the video output with those
format settings. If a matching mode is not found, the video output format is
unchanged and a restart does not occur.

Figure 5–17 shows how the register values map to the progressive frame format
described in “Video Formats” on page 5–43.

Figure 5–17. Progressive Frame Parameters

Active samples
H back
porch

H blanking

H
sync

H front
porch

A
ct

iv
e

lin
es

Active
picture line

F0 active picture

V front
porch
V sync
V back
porch V

 b
la

nk
in

g
Ancillary line
July 2010 Altera Corporation Video and Image Processing Suite User Guide

5–48 Chapter 5: Functional Descriptions
Clocked Video Output
Table 5–21 shows how Figure 5–17 relates to the register map.

Table 5–21. Progressive Frame Parameter Descriptions

Register Name Parameter Description

ModeN Control N/A

The zeroth bit of this register is the Interlaced bit:

■ Set to 0 for progressive. Bit 1 of this register is the sequential output
control bit (only if the Allow output of color planes in sequence compile-
time parameter is enabled).

■ Setting bit 1 to 1, enables sequential output from the Clocked Video
Output, such as for NTSC. Setting bit 1 to a 0, enables parallel output from
the Clocked Video Output, such as for 1080p.

ModeN Sample Count Active samples The width of the active picture region in samples/pixels.

ModeN F0 Line Count Active lines The height of the active picture region in lines.

ModeN Horizontal Front
Porch H front porch (Separate synchronization mode only.) The front porch of the horizontal

synchronization (the low period before the synchronization starts).

ModeN Horizontal Sync
Length H sync (Separate synchronization mode only.) The synchronization length of the

horizontal synchronization (the high period of the sync).

ModeN Horizontal
Blanking H blanking The horizontal blanking period (non active picture portion of a line).

ModeN Vertical Front
Porch V front porch (Separate synchronization mode only.) The front porch of the vertical

synchronization (the low period before the synchronization starts).

ModeN Vertical Sync
Length V sync (Separate synchronization mode only.) The synchronization length of the

vertical synchronization (the high period of the sync).

ModeN Vertical Blanking V blank The vertical blanking period (non active picture portion of a frame).

ModeN Active Picture
Line

Active picture
line

The line number that the active picture starts on. For non SDI output this can
be left at 0.

ModeN Valid N/A Set to enable the mode after the configuration is complete.

ModeN Ancillary Line Ancillary line (Embedded synchronization mode only.) The line to start inserting ancillary
packets.
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 5: Functional Descriptions 5–49
Clocked Video Output
Figure 5–18 shows how the register values map to the interlaced frame format
described in “Video Formats” on page 5–43.

Figure 5–18. Interlaced Frame Parameters

F
0

 a
ct

iv
e

 li
n

e
s

F
1

 a
ct

iv
e

 li
n

e
s

A
ct

iv
e

 li
n

e
s

Active
picture line

F0 V rising
edge line

F rising
edge line

F0 active picture

F1 active picture

V front
porch

V sync

V back
porch

F0 V front
porch

F0 V sync

F0 V back
porch

V
 b

la
n

ki
n

g
F

0
 V

 b
la

n
k

Active samples
H back
porch

H blanking

H
sync

H front
porch

F falling
edge line

Ancillary line

F0 ancillary line
July 2010 Altera Corporation Video and Image Processing Suite User Guide

5–50 Chapter 5: Functional Descriptions
Clocked Video Output
Table 5–22 shows how Figure 5–18 relates to the register map.

Table 5–22. Interlaced Frame Parameter Descriptions

Register Name Parameter Description

ModeN Control N/A

The zeroth bit of this register is the Interlaced bit:

■ Set to 0 for interlaced.

■ Bit 1 of this register is the sequential output control bit (only if the Allow
output of color planes in sequence compile-time parameter is enabled).

■ Setting bit 1 to 1, enables sequential output from the Clocked Video
Output, such as for NTSC. Setting bit 1 to a 0, enables parallel output
from the Clocked Video Output, such as for 1080p.

ModeN Sample Count Active samples The width of the active picture region in samples/pixels.

ModeN F0 Line Count F0 active lines The height of the active picture region for field F0 in lines.

ModeN F1 Line Count F1 active lines The height of the active picture region for field F1 in lines.

ModeN Horizontal Front
Porch H front porch (Separate synchronization mode only.) The front porch of the horizontal

synchronization (the low period before the synchronization starts).

ModeN Horizontal Sync
Length H sync (Separate synchronization mode only.) The synchronization length of the

horizontal synchronization (the high period of the sync).

ModeN Horizontal
Blanking H blanking The horizontal blanking period (non active picture portion of a line).

ModeN Vertical Front
Porch V front porch

(Separate synchronization mode only.) The front porch of the vertical
synchronization (the low period before the synchronization starts) for field
F1.

ModeN Vertical Sync
Length V sync (Separate synchronization mode only.) The synchronization length of the

vertical synchronization (the high period of the sync) for field F1.

ModeN Vertical Blanking V blanking The vertical blanking period (non active picture portion of a frame) for field
F1.

ModeNF0 Vertical Front
Porch F0 V front porch

(Separate synchronization mode only.) The front porch of the vertical
synchronization (the low period before the synchronization starts) for field
F0.

ModeN F0 Vertical Sync
Length F0 V sync (Separate synchronization mode only.) The synchronization length of the

vertical synchronization (the high period of the sync) for field F0.

ModeN F0 Vertical
Blanking F0 V blank The vertical blanking period (non active picture portion of a frame) for field

F0.

ModeN Active Picture
Line active picture line The line number that the active picture starts on. For non SDI output this

can be left at 0.

ModeN F0 Vertical Rising F0 V rising edge
line The line number that the vertical blanking period for field F0 begins on.

ModeN Field Rising F rising edge line The line number that field F1 begins on.

ModeN Field Falling F falling edge line The line number that field F0 begins on.

ModeN Valid N/A Set to enable the mode after the configuration is complete.

ModeN Ancillary Line Ancillary line (Embedded synchronization mode only.) The line to start inserting ancillary
packets.

ModeN F0 Ancillary Line F0 ancillary line (Embedded synchronization mode only.) The line in field F0 to start
inserting ancillary packets.
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 5: Functional Descriptions 5–51
Clocked Video Output
The mode registers can only be written to if a mode is marked as invalid. For example,
the following steps reconfigure mode 1:

1. Write 0 to the Mode1 Valid register.

2. Write to the mode 1 configuration registers.

3. Write 1 to the Mode1 Valid register. The mode is now valid and can be selected.

A currently-selected mode can be configured in this way without affecting the video
output of the MegaCore function.

When searching for a matching mode and there are multiple modes that match the
resolution, the function selects the lowest mode. For example, the function selects
Mode1 over Mode2 if they both match. To allow the function to select Mode2,
invalidate Mode1 by writing a 0 to its mode valid register. Invalidating a mode does
not clear its configuration.

Interrupts
The Clocked Video Output MegaCore function outputs a single interrupt line which is
the OR of the following internal interrupts:

■ The status update interrupt— Triggers when the Video Mode Match register is
updated by a new video mode being selected.

■ Locked interrupt—Triggers when the outgoing video SOF is aligned to the
incoming SOF.

Both interrupts can be independently enabled using bits [2:1] of the Control register.
The ir values can be read using bits [2:1] of the Interrupt register and a write of 1 to
either of these bits clears the respective interrupt.

Generator Lock
The Clocked Video Output MegaCore function provides some functions to facilitate
Genlock. The MegaCore function can be configured to output, via the vcoclk_div
signal, a divided down version of its vid_clk (vcoclk) signal aligned to the SOF. By
setting the divided down value to be the length in samples of a video line, the
vcoclk_div signal can be configured to output a horizontal reference. The Genlock
functionality is enabled using the Control register. When Genlock functionality is
enabled the Clocked Video Output MegaCore does not synchronize itself to the
incoming Avalon-ST Video. Altera recommends that you disable Genlock
functionality before changing output mode and then only enable it again when the
status update interrupt has fired, indicating that the mode change has occurred.

The vcoclk_div signal can be compared to the refclk_div signal, output by a
Clocked Video Input MegaCore function, using a phase frequency detector (PFD) that
controls a voltage controlled oscillator (VCXO). By controlling the VCXO, the PFD can
align its output clock (vcoclk) to the reference clock (refclk). By tracking changes in
the refclk_div signal, the PFD can then ensure that the output clock is locked to the
incoming video clk.
July 2010 Altera Corporation Video and Image Processing Suite User Guide

5–52 Chapter 5: Functional Descriptions
Clocked Video Output
The Clocked Video Output MegaCore function can take in the SOF signal from a
Clocked Video Input MegaCore function and align its own SOF to this signal. The
Clocked Video Output SOF signal can be set to any position within the outgoing
video frame. The registers used to configure the SOF signal are measured from the
rising edge of the F0 vertical sync. A start of frame is indicated by a rising edge on the
SOF signal (0 to 1). Figure 5–16 on page 5–45 shows an example configuration.

Figure 5–19 shows how the Clocked Video Output MegaCore function compares the
two SOF signals to determine how far apart they are.

The Clocked Video Output MegaCore function then repeats or removes that number
of samples and lines in the output video to align the two SOF signals. If the SOF
signals are separated by less than a threshold number of samples (the value of the
Vcoclk Divider register), the Clocked Video Output does not alter the output video.
If your PFD clock tracking has a delay associated with it, Altera recommends that
even if the vcoclk_div signal is not being used, the Vcoclk Divider register should be
set to a threshold value e.g. 1. This stops the Clocked Video Output MegaCore
function from re-syncing every time a delay in clock tracking causes the SOF signals
to drift out by a clock cycle.

The current distance between the SOF signals is stored internally and when either the
repeat registers or the remove registers read 0 then the locked interrupt triggers.

Figure 5–19. Aligning the Output Video to the Incoming SOF

sof

Repeat 3 lines

vid_sof

sof

cvo_sof

remove_lines

repeat_lines

5

3

Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 5: Functional Descriptions 5–53
Clocked Video Output
Figure 5–20 shows an example of how to connect the Clocked Video Input and
Clocked Video Output MegaCore functions to a video PLL.

Underflow
Moving between flow controlled Avalon-ST Video and clocked video can cause
problems if the flow controlled video does not provide data at a rate fast enough to
satisfy the demands of the outgoing clocked video.

The Clocked Video Output MegaCore function contains a FIFO that, when set to a
large enough value, can accommodate any “burstiness” in the flow data, as long as
the output rate of the downstream Avalon-ST Video components is equal to or higher
than that of the outgoing clocked video.

If this is not the case, the FIFO underflows. If underflow occurs, the MegaCore
function continues to output video and re-syncs the startofpacket, for the next
image packet, from the Avalon-ST Video interface with the start of the next frame.

The underflow can be detected by looking at bit 2 of the Status register. This bit is
sticky and if an underflow occurs, stays at 1 until the bit is cleared by writing a 1 to it.
In addition to the underflow bit, the current level of the FIFO can be read from the
Used Words register.

Figure 5–20. Example System Connections

Divider +
-

Charge
Pump

Phase
Detector

VCXO

Feedback
Divider

27 MHz
Video PLL

SDI
RX

Clocked
Video
Input

Clocked
Video
Output

SDI
TX

sof

sof_locked

vid_clkrefclk_divFPGA
July 2010 Altera Corporation Video and Image Processing Suite User Guide

5–54 Chapter 5: Functional Descriptions
Clocked Video Output
Timing Constraints
To constrain the Clocked Video Output MegaCore function correctly, add the
following file to your Quartus II project:

 <install_dir>\ip\clocked_video_output\lib\alt_vip_cvo.sdc.

When you apply the SDC file, you may see some warning messages in a format as
follows:

■ Warning: At least one of the filters had some problems and could not be matched.

■ Warning: * could not be matched with a keeper.

These warnings are expected, because in certain configurations the Quartus II
software optimizes unused registers and they no longer remain in your design.

Active Format Description Inserter
The AFD Inserter is an example of how to write a core to handle ancillary packets. It is
available in the following directory:

<install_dir>\ip\clocked_video_output\lib\afd_example

When the output of the AFD Inserter is connected to the input of the Clocked Video
Output MegaCore function, the AFD Inserter inserts an Avalon-ST Video ancillary
data packet into the stream after each control packet. The AFD Inserter sets the DID
and SDID of the ancillary packet to make it an AFD packet (DID = 0x41, SDID = 0x5).
The contents of the ancillary packet are controlled by the AFD Inserter register map.

f Refer to the SMPTE 2016-1-2007 standard for a more detailed description of the AFD
codes.

Table 5–23 shows the AFD Inserter register map.

Table 5–23. AFD Inserter Register Map

Address Register Description

0 Control
When bit 0 is 0, the core discards all packets.

When bit 0 is 1, the core passes through all non-
ancillary packets.

1 Reserved.

2 Reserved.

3 AFD Bits 0-3 contain the active format description code.

4 AR Bit 0 contains the aspect ratio code.

5 Bar data flags Bits 0-3 contain the bar data flags to insert

6 Bar data value 1 Bits 0-15 contain the bar data value 1 to insert

7 Bar data value 2 Bits 0-15 contain the bar data value 2 to insert

8 AFD valid

When bit 0 is 0, an AFD packet is not present for each
image packet.

When bit 0 is 1, an AFD packet is present for each
image packet.
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 5: Functional Descriptions 5–55
Color Plane Sequencer
Color Plane Sequencer
The Color Plane Sequencer MegaCore function rearranges the color pattern used to
transmit Avalon-ST Video data packets over an Avalon-ST connection (stream). The
Color Plane Sequencer can also split or duplicate a single Avalon-ST Video stream into
two or, conversely, combine two input streams into a single stream.

A color pattern is a matrix that defines a repeating pattern of color samples. For full
details of the Avalon-ST Video protocol, refer to “Avalon-ST Video Protocol” on
page 4–2.

Rearranging Color Patterns
The Color Plane Sequencer can rearrange the color pattern of a video data packet in
any valid combination of channels in sequence and parallel. The Color Plane
Sequencer can also drop color planes. Avalon-ST Video packets of types other than
video data packets are forwarded unchanged.

Figure 5–21 on page 5–55 shows an example that rearranges the color pattern of a
video data packet which transmits color planes in sequence, to a color pattern that
transmits color planes in parallel.

Combining Color Patterns
The Color Plane Sequencer also allows the combination of two Avalon-ST Video
streams into a single stream. In this mode of operation, two input color patterns (one
for each input stream) are combined and arranged to the output stream color pattern
in a user defined way, so long as it contains a valid combination of channels in
sequence and parallel.

In addition to this combination and arrangement, color planes can also be dropped.
Avalon-ST Video packets other than video data packets can be forwarded to the single
output stream with the following options:

■ Packets from input stream 0 (port din0) and input stream 1 (port din1) forwarded,
input stream 0 packets being transmitted last. (The last control packet received is
the one an Avalon-ST Video compliant MegaCore function uses.)

■ Packets from input stream 0 forwarded, packets from input stream 1 dropped.

■ Packets from input stream 1 forwarded, packets from input stream 0 dropped.

Figure 5–21. Example of Rearranging Color Patterns

Color pattern of a video data
packet on the input stream
3 color plane samples in sequence

Color pattern of a video data
packet on the output stream
3 color plane samples in parallel

R G B

B

G

R

July 2010 Altera Corporation Video and Image Processing Suite User Guide

5–56 Chapter 5: Functional Descriptions
Color Plane Sequencer
Figure 5–22 shows an example of combining and rearranging two color patterns.

Splitting/Duplicating
The Color Plane Sequencer also allows the splitting of a single Avalon-ST Video input
stream into two Avalon-ST Video output streams. In this mode of operation, the color
patterns of video data packets on the output streams can be arranged in a user defined
way using any of the color planes of the input color pattern.

The color planes of the input color pattern are available for use on either, both, or
neither of the outputs. This allows for splitting of video data packets, duplication of
video data packets, or a mix of splitting and duplication. The output color patterns are
independent of each other, so the arrangement of one output stream's color pattern
places no limitation on the arrangement of the other output stream's color pattern.

Figure 5–22. Example of Combining Color Patterns

Color pattern of a video data
packet on input stream 0
3 color plane samples in sequence

Color pattern of a video data
packet on the output stream
2 color plane samples in parallel
and sequence

R G B

B

X

Y

Z

R

G

X

Y

Z Color pattern of a video data
packet on input stream 1
3 color plane samples in parallel Planes unused between the

input and output are dropped
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 5: Functional Descriptions 5–57
Color Plane Sequencer
Avalon-ST Video packets other than video data packets are duplicated to both
outputs. Figure 5–23 shows an example of partially splitting and duplicating an input
color pattern.

Subsampled Data
In addition to fully sampled color patterns, the Color Plane Sequencer supports 4:2:2
subsampled data. To facilitate this support, you can configure the Color Plane
Sequencer with two color patterns in sequence, so that subsampled planes can be
specified individually.

When splitting subsampled planes from fully-sampled planes, the Avalon-ST Video
control packet for the subsampled video data packet can have its width value halved,
so that the subsampled planes can be processed by other MegaCore functions as if
fully sampled. This halving can be applied to control packets on port dout0 and port
dout1, or control packets on port dout0 only.

Avalon-ST Video Stream Requirements
The only stream requirement imposed is that when two streams are being combined,
the video data packets must contain the same total number of pixels, and to make a
valid image, the packets must have the same dimensions. The Color Plane Sequencer
can process streams of pixel data of the types shown in Table 5–24.

Figure 5–23. Example of Splitting and Duplicating Color Patterns

R G B

G B

R

G

Color pattern of a video data
packet on the input stream
3 color plane samples in sequence

Color pattern of a video data
packet on output stream 0
2 color plane samples in parallel

Color pattern of a video data
packet on output stream 1
2 color plane samples in sequence

Table 5–24. Color Plane Sequencer Avalon-ST Video Protocol Parameters

Parameter Value

Frame Width Read from control packets at run time.

Frame Height Read from control packets at run time.

Interlaced / Progressive Either.

Bits per Color Sample Number of bits per color sample selected in the MegaWizard interface.

Color Pattern The color pattern you select in the MegaWizard interface.
July 2010 Altera Corporation Video and Image Processing Suite User Guide

5–58 Chapter 5: Functional Descriptions
Test Pattern Generator
Test Pattern Generator
The Test Pattern Generator MegaCore function can be used to produce a video stream
compliant with the Avalon-ST Video protocol that feeds a video system during its
design cycle. The Test Pattern Generator MegaCore function produces data on request
and consequently permits easier debugging of a video data path without the risks of
overflow or misconfiguration associated with the use of the Clocked Video Input
MegaCore function or of a custom component using a genuine video input.

Test Pattern
The Test Pattern Generator MegaCore function can generate either a uniform image
using a constant color specified by the user at compile time or a set of predefined color
bars. Both patterns are delimited by a black rectangular border. The color bar pattern
(Figure 5–24) is a still image composed with a set of eight vertical color bars of 75%
intensity (white, yellow, cyan, green, magenta, red, blue, black).

The sequence runs through the eight possible on/off combinations of the three color
components of the RGB color space starting with a 75% amplitude white. Green is on
for the first four bars and off for the last four bars, red cycles on and off every two
bars, and blue cycles on and off every bar.

The actual numerical values are given in Table 5–25 (assuming 8 bits per color
samples). If the output is requested in a different number of bits per color sample
these values are converted by truncation or promotion.

Figure 5–24. Color Bar Pattern

Table 5–25. Test Pattern Color Values (Part 1 of 2)

R’G’B’ Y’CbCr

White/Grey (180,180,180) (180,128,128)

Yellow (180,180,16) (162,44,142)

Cyan (16,180,180) (131,156,44)

Green (16,180,16) (112,72,58)

Magenta (180,16,180) (84,184,198)

Red (180,16,16) (65,100,212)
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 5: Functional Descriptions 5–59
Test Pattern Generator
The choice of a specific resolution and subsampling for the output leads to natural
constraints on the test pattern. If the format has a horizontal subsampling period of
two for the Cb and Cr components when the output is in the Y’CbCr color space, the
black borders at the left and right are two pixels wide. Similarly, the top and bottom
borders are two pixels wide when the output is vertically subsampled.

The width and the horizontal subsampling might also have an effect on the width of
each color bar. When the output is horizontally subsampled, the pixel-width of each
color bar is a multiple of two. When the width of the image (excluding the left and
right borders) cannot be exactly divided by eight, then the last black bar is larger than
the others. For example, when producing a 640×480 frame in the Y’CbCr color space
with 4:2:2 subsampling, the left and right black borders are two pixels wide each, the
seven initial color bars are 78 pixels wide ((640–4)/8 truncated down to the nearest
multiple of 2) and the final black color bar is 90 pixels wide (640–7×78–4).

Generation of Avalon-ST Video Control Packets and Run-Time Control
The Test Pattern Generator MegaCore function outputs a valid Avalon-ST Video
control packet before each image data packet it generates, whether it is a progressive
frame or an interlaced field. When the output is interlaced, the Test Pattern Generator
MegaCore function produces a sequence of pairs of field, starting with F0 if the output
is F1 synchronized of with F1 if the output is F0 synchronized.

When the Avalon Slave run-time controller is enabled, the resolution of the output can
be changed at run-time at a frame boundary, that is, before the first field of a pair
when the output is interlaced. For details of the control register map for the Test
Pattern Generator, refer to Table 7–18 on page 7–13.

Because the Test Pattern Generator does not accept an input stream, the pseudo-code
in “Avalon-MM Slave Interfaces” on page 4–17 is slightly modified:

go = 0;
while (true)
{

status = 0;
while (go != 1)

wait();
read_control(); //Copies control to internal register
status = 1;

do once for progressive output or twice for interlaced output
{

send_control_packet();
send_image_data_header();
output_test_pattern ();

}
}

Output Data Types
The Test Pattern Generator MegaCore function supports a wide range of resolutions
and color spaces with either a sequential or parallel data interface.

Blue (16,16,180) (35,212,114)

Black (16,16,16) (16,128,128)

Table 5–25. Test Pattern Color Values (Part 2 of 2)

R’G’B’ Y’CbCr
July 2010 Altera Corporation Video and Image Processing Suite User Guide

5–60 Chapter 5: Functional Descriptions
Test Pattern Generator
In all combinations of color space and subsampling that are allowed, the stream of
pixel data is of a type consistent with the conventions adopted by the other MegaCore
functions in the Video and Image Processing Suite.

The Test Pattern Generator MegaCore function can output streams of pixel data of the
types shown in Table 5–26.

1 The Test Pattern Generator cannot produce interlaced streams of pixel data with an
odd frame height. To create interlaced video streams where F0 fields are one line
higher than F1 fields, Altera recommends feeding Test Pattern Generator progressive
video output into the Interlacer MegaCore function.

Table 5–26. Test Pattern Generator Avalon-ST Video Protocol Parameters

Parameter Value

Frame Width Width selected in the MegaWizard interface. Can be run-time controlled in which case, the value
specified in the GUI is the maximum allowed value.

Frame Height Height selected in the MegaWizard interface. Can be run-time controlled in which case, the value
specified in the GUI is the maximum allowed value.

Interlaced /
Progressive Mode selected in the MegaWizard interface.

Bits per Color Sample Number of bits per color sample selected in the MegaWizard interface.

Color Space As selected in the MegaWizard interface. RGB (4:4:4 subsampling only) or YCbCr.

Color Pattern

For RGB sequential data: For RGB parallel data:

For 4:4:4 sequential data: For 4:2:2 sequential data:

For 4:2:0 sequential data: For 4:2:2 parallel data:

For 4:4:4 parallel data: For 4:2:0 parallel data:

Notes to Table 5–26:

(1) 4:2:2 and 4:2:0 subsampling are not available for the RGB color space.
(2) Vertical subsampling and interlacing cannot be used when the height of the output is not even. The GUI does not allow such a parameterization

and the behavior of the MegaCore function is undefined if the height is subsequently set to an odd value through the run-time control.
(3) Vertical subsampling and interlacing are incompatible with each other and cannot be selected simultaneously in the GUI.

RGB

B

G

R

CrCb Y CrCb YY

Cb
CrY Y

Cb Cr

Y Y

Y

Cb

Cr CrCb

Y

Y

Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 5: Functional Descriptions 5–61
Control Synchronizer
Control Synchronizer
You can use the Control Synchronizer MegaCore function to synchronize the
configuration of other MegaCore functions with an event in the video stream. The
control synchronizer has an Avalon Video Streaming Input and Output port, which
passes through Avalon-ST Video data, and monitors the data for trigger events. The
events that can trigger the control synchronizer are the start of a video data packet, or
a change in the width or height field of a control data packet that describes the next
video data packet.

The Control Synchronizer MegaCore function also has an Avalon Master port. When
the Control Synchronizer MegaCore function detects a trigger event the MegaCore
writes data to the Avalon Slave control ports of other MegaCores. The Control
Synchronizer MegaCore function also has an Avalon Slave port that sets the data to be
written and the addresses that the data should be written to when the MegaCore
function detects a trigger event.

When the Control Synchronizer MegaCore function detects a trigger event, it
immediately stalls the Avalon-ST video data flowing through the MegaCore, which
freezes the state of other MegaCore functions on the same video processing data path
that do not have buffering in between. The Control Synchronizer then writes the data
stored in its Avalon Slave register map to the addresses that are also specified in the
register map. Once this writing is complete the Control Synchronizer resumes the
Avalon-ST video data flowing through it. This function ensures that any cores after
the Control Synchronizer have their control data updated before the start of the video
data packet to which the control data applies. Once all the writes from a Control
Synchronizer trigger are complete, an interrupt is triggered or is initiated, which is the
“completion of writes” interrupt.

The control synchronizer has an address in its Avalon Slave Control port that you can
use to disable or enable the trigger condition. The Control Synchronizer can
optionally be configured before compilation to set this register to the “disabled” value
after every trigger event, this is useful when using the control synchronizer to trigger
only on a single event.

Using the Control Synchronizer
This section provides an example of how to use the Control Synchronizer MegaCore
function. The Control Synchronizer is set to trigger on the changing of the width field
of control data packets. In the following example, the Control Synchronizer is placed
in a system containing a Test Pattern Generator, a Frame Buffer, and a Scaler. The
Control Synchronizer must synchronize a change of the width of the generated video
packets with a change to the Scaler output size, such that the Scaler maintains a
scaling ratio of 1:1 (no scaling). The Frame Buffer is configured to drop and repeat;
this makes it impossible to calculate when packets streamed into the Frame Buffer are
streamed out to the Scaler, which means that the Scaler cannot be configured in
advance of a certain video data packet. The Control Synchronizer solves this problem,
as described in the following scenario.
July 2010 Altera Corporation Video and Image Processing Suite User Guide

5–62 Chapter 5: Functional Descriptions
Control Synchronizer
1. Set up the change of video width as shown in Figure 5–25.

2. The Test Pattern Generator has changed the size of its Video Data Packet and
Control Data Packet pairs to 320 width. It is not known when this change will
propagate through the Frame Buffer to the Scaler (Figure 5–26).

Figure 5–25. Change of Video Width

Figure 5–26. Changing Video Width

Test Pattern
Generator

Frame
Buffer

Control
Synchronizer Scaler

Nios II CPU
CPU Writes to
Test Pattern
Generator,

changing frame width to 320

Red Line Indicates Control Data Packet and Video Data Packet Pair Number 4 (Width 640)

Blue Line Indicates Control Data Packet and Video Data Packet Pair Number 0 (Width 640)

Control Data packet and Video Data Packet Pair Numbers 1, 2 and 3 are Stored in the Frame Buffer

CPU Writes to Control
Synchronizer, Configures it to

Change Scaler Output Size to 320 Width
When a Change in Width is Detected

Avalon MM

Avalon MM

Avalon MM

Avalon MM
Master

Test Pattern
Generator

Frame
Buffer

Control
Synchronizer Scaler

Nios II CPU

Red Line Indicates Control Data Packet and Video Data Packet Pair Number 5 (Width 320)

Blue Line Indicates Control Data Packet and Video Data Packet Pair Number 1 (Width 640)

Control Data Packet and Video Data Packet Pair Numbers 2, 3, and 4 are Stored in the Frame Buffer

Avalon MM

Avalon MM

Avalon MM

Avalon MM
Master
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 5: Functional Descriptions 5–63
Control Synchronizer
3. The Video Data Packet and Control Data Packet pair with changed width of 320
have propagated through the Frame Buffer. The Control Synchronizer has
detected the change and triggered a write to the Scaler. The Control Synchronizer
has stalled the video processing pipeline while it performs the write, as shown in
Figure 5–27.

4. The Scaler has been reconfigured to output width 320 frames. The Control
Synchronizer has resumed the video processing pipeline. At no point did the
Scaling ratio change from 1:1, as shown in Figure Figure 5–28.

You can customize the Control Synchronizer according to the parameters shown in
Table 5–27.

Figure 5–27. Test Pattern Generator Change

Figure 5–28. Reconfigured Scaler.

Table 5–27. Control Synchronizer Parameters (Part 1 of 2)

Parameter Value

Frame Width Runtime controlled. Any valid value supported.

Frame Height Runtime controlled. Any valid value supported.

Interlaced / Progressive Runtime controlled. Any valid value supported.

Test Pattern
Generator

Frame
Buffer

Control
Synchronizer Scaler

Nios II CPU

Red Line Indicates Control Data Packet and Video Data Packet Pair Number 14 (Width 320)

Blue Line Indicates Control Data Packet and Video Data Packet Pair Number 5 (Width 320)

Light Blue Line Indicates Control Data Packet and Video Data Packet Pair Number 4 (Width 640)

Control Data Packet and Video Data Packet Pair Numbers 6 to 13 are Stored in the Frame Buffer

Control Synchronizer Writes the Data to the
Specified Addresses. This Configures the

Scaler to an Output Width of 320

Avalon MM

Avalon MM

Avalon MM

Avalon MM
Master

Test Pattern
Generator

Frame
Buffer

Control
Synchronizer Scaler

Nios II CPU

Red Line Indicates Control Data Packet and Video Data Packet Pair Number 14 (Width 320)

Blue Line Indicates Control Data Packet and Video Data Packet Pair Number 5 (Width 320)

Control Data Packet and Video Data Packet Pair Numbers 6 to 13 are Stored in the Frame Buffer

Avalon MM

Avalon MM

Avalon MM

Avalon MM
Master
July 2010 Altera Corporation Video and Image Processing Suite User Guide

5–64 Chapter 5: Functional Descriptions
Switch
Switch
The Switch MegaCore function allows the connection of up to twelve input video
streams to twelve output video streams. For example, 1 to 2, 4 to 1, 6 to 6, and so on.
The connections can be reconfigured at run time via a control input. Figure 5–27
shows an example 3 to 2 Switch with the possible connections for each input and
output.

The Switch MegaCore function does not support duplication or combining of streams.
(If these functions are required, use the Color Plane Sequencer MegaCore function.)
Each output from the Switch can be driven by only one input and each input to the
Switch can drive only one output. Any input can be disabled that is not routed to an
output, which stalls the input by pulling it's ready signal low.

The routing configuration of the Switch MegaCore function is run time configurable
through the use of an Avalon-MM slave control port. The registers of the control port
can be written to at anytime but the Switch loads the new values only when it is
stopped. Stopping the Switch MegaCore function causes all the input streams to be
synchronized at the end of an Avalon-ST Video image packet.

There are two ways to load a new configuration:

■ Writing a 0 to the Go register, waiting for the Status register to read 0 and then
writing a 1 to the Go register.

■ Writing a 1 to the Output Switch register performs the same sequence but without
the need for user intervention. This is the recommended way to load a new
configuration.

Mixer Layer Switching
You can use the Switch MegaCore function in conjunction with the Alpha Blending
Mixer MegaCore function and Control Synchronizer MegaCore function to perform
run time configurable layer switching in the Alpha Blending Mixer. Layer switching
is the ability to change the layer that a video stream is on, moving it in front of or
behind the other video streams being mixed.

Bits per Color Sample Number of bits per color sample selected in the MegaWizard interface.

Color Pattern Up to four color planes in parallel, with any number of color planes in
sequence.

Table 5–27. Control Synchronizer Parameters (Part 2 of 2)

Parameter Value
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 5: Functional Descriptions 5–65
Switch
Figure 5–29 shows the system configuration used to achieve this.

The Control Synchronizer MegaCore function ensures that the switch of the video
streams is performed at a safe place in the streams. Performing the switch when the
Alpha Blending Mixer MegaCore function is outputting the start of an image packet,
ensures that the video streams entering the Switch MegaCore function are all on the
same frame. They can then be switched on the next image end-of-packet without
causing a deadlock situation between the Switch and Alpha Blending Mixer.

The following sequence shows an example for layer switching:

1. Switch MegaCore function—Write to the DoutN Output Control registers setting
up the outputs. For example:

a. Write 1 to address 3

b. Write 2 to address 4

2. Switch MegaCore function—Enable the function by writing 1 to address 0

3. Switch MegaCore function—Write to the DoutN Output Control registers to
switch the outputs. For example:

a. Write 2 to address 3

b. Write 1 to address 4

4. Control Synchronizer MegaCore function—Set up the Control Synchronizer to
write a 1 to the Switch MegaCore function’s Output Switch register on the next
start of an image packet.

For information about the compile time parameters for the Switch MegaCore
function, refer to Table 3–22 on page 3–21. For information about the run-time control
register map, refer to Table 7–20 on page 7–15. For information about the signals, refer
to Table 6–18 on page 6–21.

Figure 5–29. Example of a layer Switching System

Background Layer

Layer 1

Layer 2

Video Stream 1

Video Stream 2

Switch
MegaCore
Function

Alpha
Blending

Mixer
MegaCore
Function

Control
Synchronizer

MegaCore
Function

Avalon-MM
Master

Avalon-MM
Slave Control
July 2010 Altera Corporation Video and Image Processing Suite User Guide

5–66 Chapter 5: Functional Descriptions
Stall Behavior and Error Recovery
Stall Behavior and Error Recovery
The Video and Image Processing Suite MegaCore functions do not continuously
process data. Instead, they use flow-controlled Avalon-ST interfaces, which allow
them to stall the data while they perform internal calculations.

During control packet processing, the MegaCore functions might stall frequently and
read/write less than once per clock cycle. During data processing, the MegaCore
functions generally process one input/output per clock cycle. There are, however,
some stalling cycles. Typically, these are for internal calculations between rows of
image data and between frames/fields.

When stalled, the MegaCore function signals that it is not ready to receive or produce
data. The time spent in the stalled state varies between MegaCore functions and their
parameterizations. In general, it is a few cycles between rows and a few more between
frames. Details of exceptions to this behavior and details of stalling due to internal
buffering are given for each MegaCore function in the following sections.

If data is not available at the input when required, all of the MegaCore functions stall,
and thus do not output data. With the exceptions of the Deinterlacer and Frame Buffer
in double or triple-buffering mode, none of the MegaCore functions ever overlap the
processing of consecutive frames. The first sample of frame F + 1 is not input until
after the last sample of frame F has been output.

The following sections give bounds and guidelines describing the stalling and
throughput of the MegaCore functions but do not attempt to specify precise behavior
down to the last clock cycle. When an endofpacket signal is received unexpectedly
(early or late), the MegaCore function recovers from the error and prepares itself for
the next valid packet (control or data). The time taken to do this is described in each of
the following sections.

The exact behavior of the MegaCore functions may vary between releases or if any of
the parameters are changed.

Color Space Converter
In all parameterizations, the Color Space Converter only stalls between frames and
not between rows. It has no internal buffering apart from the registers of its
processing pipeline so there are only a few clock cycles of latency.

Error Recovery
The Color Space Converter MegaCore function processes video packets until an
endofpacket signal is received; the control packets are not used. For this MegaCore
function, there is no such condition as an early or late endofpacket, any mismatch of
the endofpacket signal and the frame size is propagated unchanged to the next
MegaCore function.

Chroma Resampler
All modes of the Chroma Resampler stall for a few cycles between frames and
between lines. Latency from input to output varies depending on the operation mode
of the Chroma Resampler MegaCore function. The only modes with latency of more
than a few cycles are 4:2:0 to 4:2:2 and 4:2:0 to 4:4:4. These modes have a latency
corresponding to one line of 4:2:0 data.
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 5: Functional Descriptions 5–67
Stall Behavior and Error Recovery
Because this is a rate-changing function, the quantities of data input and output are
not equal. The Chroma Resampler MegaCore function always outputs the same
number of lines that it inputs. However the number of samples in each line varies
according to the subsampling pattern used.

When not stalled, the Chroma Resampler always processes one sample from the more
fully sampled side on each clock cycle. For example, the subsampled side pauses for
one third of the clock cycles in the 4:2:2 case or half of the clock cycles in the 4:2:0 case.

Error Recovery
On receiving an early endofpacket signal, the Chroma Resampler stalls its input but
continues writing data until it has sent an entire frame. If it does not receive an
endofpacket signal at the end of a frame, the Chroma Resampler discards data until
the end of packet is found.

Gamma Corrector
In all parameterizations, the Gamma Corrector stalls only between frames and not
between rows. It has no internal buffering aside from the registers of its processing
pipeline so there are only a few clock cycles of latency.

Error Recovery
The Gamma Corrector MegaCore function processes video packets until an
endofpacket signal is received. Non-image packets are propagated but the content of
control packets is ignored. For this MegaCore function there is no such condition as an
early or late endofpacket. Any mismatch of the endofpacket signal and the frame size
is propagated unchanged to the next MegaCore function.

2D FIR Filter
There is a delay of a little more than N–1 lines between data input and output in the
case of a N×N 2D FIR Filter. This is due to line buffering internal to the MegaCore
function.

Error Recovery
The 2D FIR Filter MegaCore function resolution is not configurable at runtime. This
MegaCore function does not read the control packets passed through it.

An error condition occurs if an endofpacket signal is received too early or too late for
the compile time configured frame size. In either case, the 2D FIR Filter always creates
output video packets of the configured size. If an input video packet has a late
endofpacket signal, then the extra data is discarded. If an input video packet has an
early endofpacket signal, then the video frame is padded with an undefined
combination of the last input pixels.

2D Median Filter
There is a delay of a little more than N–1 lines between data input and output in the
case of a N×N 2D Median Filter. This is due to line buffering internal to the MegaCore
function.
July 2010 Altera Corporation Video and Image Processing Suite User Guide

5–68 Chapter 5: Functional Descriptions
Stall Behavior and Error Recovery
Error Recovery
The 2D Median Filter MegaCore function resolution is not configurable at run time.
This MegaCore function does not read the control packets passed through it.

An error condition occurs if an endofpacket signal is received too early or too late for
the compile-time-configured frame size. In either case, the 2D FIR Filter always
creates output video packets of the configured size.

If an input video packet has a late endofpacket signal, then the extra data is
discarded. If an input video packet has an early endofpacket signal, the video frame is
padded with an undefined combination of the last input pixels.

Alpha Blending Mixer
All modes at the Alpha Blending Mixer stall for a few cycles after each output frame
and between output lines.

Between frames, the Alpha Blending Mixer is processing non-image data packets
from its input layers in sequential order and may exert backpressure during the
process until the image data header has been received for all its input.

During the mixing of a frame, the Alpha Blending Mixer reads from the background
input for each non-stalled cycle. The Alpha Blending Mixer also reads from the input
ports associated with layers that currently cover the background image. Because of
pipelining, the foreground pixel of layer N is read approximately N active cycles after
the corresponding background pixel has been read. If the output is applying
backpressure or if one input is stalling, the pipeline stalls and the backpressure
propagates to all active inputs. When alpha blending is enabled, one data sample is
read from each alpha port once each time that a whole pixel of data is read from the
corresponding input port.

There is no internal buffering in the Alpha Blending Mixer MegaCore function, so the
delay from input to output is just a few clock cycles and increases linearly with the
number of inputs.

Error Recovery
The Alpha Blending Mixer MegaCore function processes video packets from the
background layer until the end of packet is received. If an endofpacket signal is
received too early for the background layer, the Alpha Blending Mixer enters error
mode and continues writing data until it has reached the end of the current line. The
endofpacket signal is then set with the last pixel sent. If an endofpacket signal is
received early for one of the foreground layers or for one of the alpha layers, the
Alpha Blending Mixer stops pulling data out of the corresponding input and pads the
incomplete frame with undefined samples. If an endofpacket signal is received late
for the background layer, one or more foreground layers, or one or more alpha layers,
the Alpha Blending Mixer enters error mode.

When the Alpha Blending Mixer MegaCore function enters error mode (because of an
early endofpacket for the background layer or a late endofpacket for any layer), it has
to discard data until the endofpacket has been reached for all input layers.
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 5: Functional Descriptions 5–69
Stall Behavior and Error Recovery
This error recovery process maintains the synchronization between all the inputs and
is started once the output frame is completed. A large number of samples may have to
be discarded during the operation and backpressure can be applied for a long time on
most input layers. Consequently, this error recovery mechanism could trigger an
overflow at the input of the system.

Scaler
In the Scaler MegaCore function, the ratio of reads to writes is proportional to the
scaling ratio and occurs on both a per-pixel and a per-line basis. The frequency of lines
where reads and writes occur is proportional to the vertical scaling ratio. For example,
scaling up vertically by a factor of 2 results in the input being stalled every other line
for the length of time it takes to write one line of output; scaling down vertically by a
factor of 2 results in the output being stalled every other line for the length of time it
takes to read one line of input.

In a line that has both input and output active, the ratio of reads and writes is
proportional to the horizontal scaling ratio. For example, scaling from 64×64 to
128×128 causes 128 lines of output, where only 64 of these lines have any reads in
them. For each of these 64 lines, there are two writes to every read.

The internal latency of the Scaler depends on the scaling algorithm and whether any
run time control is enabled. The scaling algorithm impacts stalling as follows:

■ In nearest-neighbor mode, the delay from input to output is just a few clock cycles.

■ In bilinear mode, a complete line of input is read into a buffer before any output is
produced. At the end of a frame there are no reads as this buffer is drained. Exactly
how many writes are possible during this time depends on the scaling ratio.

■ In bicubic mode, three lines of input are read into line buffers before any output is
ready. As with linear interpolation, there is a scaling ratio dependent time at the
end of a frame where no reads are needed as the buffers are drained.

■ In polyphase mode with Nv vertical taps, Nv – 1 lines of input are read into line
buffers before any output is ready. As with bilinear mode, there is a scaling ratio
dependent time at the end of a frame where no reads are needed as the buffers are
drained.

Enabling run-time control of coefficients and/or resolutions affects stalling between
frames:

■ With no run-time control, there is only a few cycles of delay before the behavior
described in the previous list begins.

■ Enabling run-time control of resolutions in nearest-neighbor mode adds about 20
clock cycles of delay between frames. In other modes, it adds a maximum of 60
cycles delay.

■ Enabling run-time control of coefficients adds a constant delay of about 20 cycles
plus the total number of coefficients to be read. For example, 16 taps and 32 phases
in each direction would add a delay of 20 + 2(16 × 32) = 1024 cycles.
July 2010 Altera Corporation Video and Image Processing Suite User Guide

5–70 Chapter 5: Functional Descriptions
Stall Behavior and Error Recovery
Error Recovery
On receiving an early endofpacket signal, the Scaler stalls its input but continues
writing data until it has sent an entire frame. If it does not receive an endofpacket
signal at the end of a frame, the Scaler discards data until the end-of-packet is found.

Clipper
The Clipper MegaCore function stalls for a few cycles between lines and between
frames. Its internal latency is less than 10 cycles. During the processing of a line, it
reads continuously but the Clipper only writes when inside the active picture area as
defined by the clipping window.

Error Recovery
On receiving an early endofpacket signal, the Clipper stalls its input but continues
writing data until it has sent an entire frame. If it does not receive an endofpacket
signal at the end of a frame, the Clipper discards data until the end-of-packet is found.

Deinterlacer
While the bob algorithm (with no buffering) is producing an output frame it
alternates between simultaneously receiving a row on the input port and producing a
row of data on the output port, and just producing a row of data on the output port
without reading any data from the input port.

The delay from input to output is just a few clock cycles. While a field is being
discarded, input is read at the maximum rate and no output is generated.

Select the weave algorithm, so that the MegaCore function stalls for longer than the
usual periods between each output row of the image. Stalls of up to 45 clock cycles are
possible due to the time taken for internal processing in between lines.

Select the motion-adaptive algorithm, so that stalls up to 90 clock cycles are possible.

Select double or triple-buffering, so that external memory decouples data input and
output. The MegaCore function writes non-image data packets into memory by
predeclaring transfers of fixed size. The function cannot interrupt memory
transactions immediately when it receives an endofpacket signal.

For each non-image data packet received, the number of words written into memory
always corresponds to the maximum packet size defined in the MegaWizard
interface. Consequently, the Deinterlacer MegaCore function does not handle control
packets efficiently when large user-defined packets are used. This does not apply
when reading non-image packets back from the external memory because the size of
each incoming packet is registered after it has been determined.

1 When buffering is used with bob deinterlacing and fields are being discarded, they
are discarded at the input rather than being buffered through external RAM and then
discarded. This reduces the external RAM bandwidth requirement of the Deinterlacer
in these modes.
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 5: Functional Descriptions 5–71
Stall Behavior and Error Recovery
Error Recovery
An error condition occurs if an endofpacket signal is received too early or too late
relative to the field dimensions contained in the last control packet processed. In all its
configurations, the Deinterlacer discards extra data if the endofpacket signal is
received too late.

If an early endofpacket signal is received when the Deinterlacer is configured for no
buffering, the MegaCore function interrupts its processing within one or two lines
sending undefined pixels, before propagating the endofpacket signal.

If an early endofpacket signal is received when the Deinterlacer is configured to
buffer data in external memory, the input side of the MegaCore function stops
processing input pixels. It is then ready to process the next frame after writing
undefined pixels for the remainder of the current line into external RAM. The output
side of the Deinterlacer assumes that incomplete fields have been fully received and
pads the incomplete fields to build a frame, using the undefined content of the
memory.

Interlacer
While producing an interlaced output field, the Interlacer MegaCore function
alternates between propagating and discarding a row from the input port.
Consequently, the output port is inactive every other row. The delay from input to
output is a few clock cycles when pixels are propagated.

Error Recovery
The Interlacer MegaCore function discards extra data when the endofpacket signal is
received later than expected. When an early endofpacket signal is received, the
current output field is interrupted as soon as possible and may be padded with a
single undefined pixel.

Frame Reader
The Frame Reader MegaCore function stalls the output for several tens of cycles
before outputting each video data packet, and stalls the output where there is
contention for access to external memory. The Frame Reader MegaCore can be stalled
due to backpressure, without consequences.

Frame Buffer
The Frame Buffer MegaCore function may stall frequently and read or write less than
once per clock cycle during control packet processing. During data processing at the
input or at the output, the stall behavior of the Frame Buffer is largely decided by
contention on the memory bus.
July 2010 Altera Corporation Video and Image Processing Suite User Guide

5–72 Chapter 5: Functional Descriptions
Stall Behavior and Error Recovery
Error Recovery
The Frame Buffer MegaCore function does not rely on the content of the control
packets to determine the size of the image data packets. There is consequently no
error condition such as early or late endofpacket signal and any mismatch between
the size of the image data packet and the content of the control packet is propagated
unchanged to the next MegaCore function. Nevertheless, the Frame Buffer does not
write outside the memory allocated for each non-image and image Avalon-ST Video
packet, and packets are truncated if they are larger than the maximum size defined at
compile time.

Color Plane Sequencer
The Color Plane Sequencer MegaCore function stalls for approximately 10 cycles after
processing each line of a video frame. Between frames the MegaCore function stalls
for approximately 30 cycles.

Error Recovery
The Color Plane Sequencer MegaCore function processes video packets per line until
an endofpacket signal is received on din0. (The line width is taken from the control
packets on din0.) When an endofpacket signal is received on either din0 or din1 the
Color Plane Sequencer ceases output. For the number of cycles left to finish the line,
the MegaCore function continues to drain the inputs that have not indicated end-of-
packet. The MegaCore function drains din0 until it receives an endofpacket signal on
this port (unless it has already indicated end-of-packet), and stalls for up to one line
after this endofpacket signal. The MegaCore function then signals end-of-packet on
its outputs and continue to drain its inputs that have not indicated end-of-packet.

Test Pattern Generator
All modes of the Test Pattern Generator stall for a few cycles after a field, after a
control packet, and between lines. When producing a line of image data, the Test
Pattern Generator outputs one sample on every clock cycle, but it can be stalled
without consequences if other functions down the data path are not ready and exert
backpressure.

Control Synchronizer
The Control Synchronizer stalls for several cycles between packets. When the Control
Synchronizer enters a triggered state it stalls while it writes to the Avalon-MM Slave
ports of other MegaCore functions. If the slaves do not provide a “wait request”
signal, the stall lasts for no more than 50 clock cycles. Otherwise the stall is of
unknown length.

1 Clipper and scaler use the wait_request signal.
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 5: Functional Descriptions 5–73
Latency
Error Recovery
The Control Synchronizer MegaCore function processes all packets until an
endofpacket signal is received; the image width, height and interlaced fields of the
control data packets are not compared against the following video data packet. Any
mismatch of the endofpacket signal and the frame size of a video data packet is
propagated unchanged to the next MegaCore function.

Clocked Video Input
The stall behavior of the Clocked Video Input MegaCore function is dictated by the
incoming video. If its output FIFO is empty, during horizontal and vertical blanking
periods the Clocked Video Input does not output any video data.

Error Recovery
If an overflow is caused by a downstream core failing to receive data at the rate of the
incoming video, the Clocked Video Input MegaCore function sends an early end of
packet and restart sending video data at the start of the next frame or field.

Clocked Video Output
Once its input FIFO is full, the stall behavior of the Clocked Video Output MegaCore
function is dictated by the outgoing video. During horizontal and vertical blanking
periods it stalls and does not take in any more video data.

Error Recovery
If the Clocked Video Output MegaCore receives an early end of packet it will re-
synchronize the outgoing video to the incoming video data on the next start of packet
it receives. If the Clocked Video Output MegaCore receives a late start of packet it will
re-synchronize the outgoing video data to the incoming video immediately. Note that
when Genlock functionality is enabled the Clocked Video Output MegaCore does not
re-synchronize to the incoming video.

Switch
The Switch MegaCore function only stalls its inputs when performing an output
switch. Before switching its outputs it synchronize all its inputs and during this
synchronization the inputs may be stalled.

Latency
Table 5–28 shows the approximate latency from the video data input to the video data
output for typical usage modes of each MegaCore function. You can use this table to
predict the approximate latency between the input and the output of your video
processing pipeline.

The latency is described using one or more of the following measures:

■ the number of progressive frames

■ the number of interlaced fields

■ the number of lines when less than a field of latency
July 2010 Altera Corporation Video and Image Processing Suite User Guide

5–74 Chapter 5: Functional Descriptions
Latency
■ a small number of cycles O (cycles)

Table 5–28. Latency Summary

MegaCore Function Mode Latency (Note 1)

Color Space Converter All modes O (cycles)

Chroma Resampler
Input format: 4:2:2; Output format: 4:4:4

Input format: 4:2:0; Output format: 4:4:4 or 4:2:2

O (cycles)

1 line + O (cycles)

Gamma Corrector All modes O (cycles)

2D FIR Filter Filter size: N × N (N–1) lines +O (cycles)

2D Median Filter Filter size: N × N (N–1) lines +O (cycles)

Alpha Blending Mixer All modes O (cycles)

Scaler
Scaling algorithm: Polyphase

Number of vertical taps: N
(N–1) lines +O (cycles)

Clipper All modes O (cycles)

Deinterlacer

Method: Bob

Frame buffering: None
O (cycles)

Method: Motion-adaptive or Weave

Frame buffering: Double or triple buffering with rate conversion

Output frame rate: As input frame rate

1 frame +O (lines)

Method: Motion-adaptive or Weave

Frame buffering: Double or triple buffering with rate conversion

Output frame rate: As input field rate

1 field +O (lines)

Method: All

Frame buffering: Double or triple buffering with rate conversion

Passthrough mode (propagate progressive frames unchanged): On.

1 frame +O (lines)

Interlacer All modes O (cycles)

Frame Buffer All modes 1 frame +O lines

Color Plane Sequencer All modes O (cycles)

Clocked Video Input (2)

Synchronization signals: Embedded in video

Video in and out use the same clock: On
8 cycles

Synchronization signals: On separate wires

Video in and out use the same clock: On
5 cycles

Clocked Video Output
(2) All modes with Video in and out use the same clock: On 3 cycles (3)

Test Pattern Generator Not Applicable because the Test Pattern Generator is an Avalon-ST
Video source only. N/A

Frame Reader Not Applicable because the Frame Reader is a source only. N/A

Switch All modes 2 cycles

Control Synchronizer All modes O (cycles)

Notes to Table 5–28:

(1) It is assumed that the MegaCore function is not being stalled by other functions on the data path (the output ready signal is high).
(2) Add 1 cycle if Allow color planes in sequence input is turned on.
(3) Minimum latency case when video input and output rates are synchronized.
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 5: Functional Descriptions 5–75
Latency
1 The latency associated with the initial buffering phase, when a MegaCore function
first receives video data, is not included. For example, the Deinterlacer MegaCore
function in motion-adaptive mode initially buffers four fields of video in external
memory without outputting data. After the initial buffering phase, the latency from
field input to frame output (assuming the output frame rate is the same as the input
field rate) is one field + O (lines).
July 2010 Altera Corporation Video and Image Processing Suite User Guide

5–76 Chapter 5: Functional Descriptions
Latency
Video and Image Processing Suite User Guide July 2010 Altera Corporation

July 2010 Altera Corporation
6. Signals
Table 6–1 to Table 6–17 list the input and output signals for the Video and Image
Processing Suite MegaCore functions.

Color Space Converter
Table 6–1 shows the input and output signals for the Color Space Converter
MegaCore function.

Table 6–1. Color Space Converter Signals

Signal Direction Description

clock In The main system clock. The MegaCore function operates on the rising edge of the
clock signal.

reset In
The MegaCore function is asynchronously reset when reset is asserted high.
The reset must be de-asserted synchronously with respect to the rising edge of
the clock signal.

din_data In din port Avalon-ST data bus. Pixel data is transferred into the MegaCore
function over this bus.

din_endofpacket In din port Avalon-ST endofpacket signal. This signal marks the end of an Avalon-
ST packet.

din_ready Out din port Avalon-ST ready signal. This signal indicates when the MegaCore
function is ready to receive data.

din_startofpacket In din port Avalon-ST startofpacket signal. This signal marks the start of an
Avalon-ST packet.

din_valid In din port Avalon-ST valid signal. This signal identifies the cycles when the port
should input data.

dout_data Out dout port Avalon-ST data bus. Pixel data is transferred out of the MegaCore
function over this bus.

dout_endofpacket Out dout port Avalon-ST endofpacket signal. This signal marks the end of an
Avalon-ST packet.

dout_ready In dout port Avalon-ST ready signal. This signal is asserted by the downstream
device when it is able to receive data.

dout_startofpacket Out dout port Avalon-ST startofpacket signal. This signal marks the start of an
Avalon-ST packet.

dout_valid Out dout port Avalon-ST valid signal. This signal is asserted when the MegaCore
function outputs data.
Video and Image Processing Suite User Guide

6–2 Chapter 6: Signals
Chroma Resampler
Chroma Resampler
Table 6–2 shows the input and output signals for the Chroma Resampler MegaCore
function.

Gamma Corrector
Table 6–3 shows the input and output signals for the Gamma Corrector MegaCore
function.

Table 6–2. Chroma Resampler Signals

Signal Direction Description

clock In The main system clock. The MegaCore function operates on the rising edge of the
clock signal.

reset In
The MegaCore function is asynchronously reset when reset is asserted high.
The reset must be de-asserted synchronously with respect to the rising edge of
the clock signal.

din_data In din port Avalon-ST data bus. Pixel data is transferred into the MegaCore
function over this bus.

din_endofpacket In din port Avalon-ST endofpacket signal. This signal marks the end of an Avalon-
ST packet.

din_ready Out din port Avalon-ST ready signal. This signal indicates when the MegaCore
function is ready to receive data.

din_startofpacket In din port Avalon-ST startofpacket signal. This signal marks the start of an
Avalon-ST packet.

din_valid In din port Avalon-ST valid signal. This signal identifies the cycles when the port
should input data.

dout_data Out dout port Avalon-ST data bus. Pixel data is transferred out of the MegaCore
function over this bus.

dout_endofpacket Out dout port Avalon-ST endofpacket signal. This signal marks the end of an
Avalon-ST packet.

dout_ready In dout port Avalon-ST ready signal. This signal is asserted by the downstream
device when it is able to receive data.

dout_startofpacket Out dout port Avalon-ST startofpacket signal. This signal marks the start of an
Avalon-ST packet.

dout_valid Out dout port Avalon-ST valid signal. This signal is asserted when the MegaCore
function outputs data.

Table 6–3. Gamma Corrector Signals (Part 1 of 2)

Signal Direction Description

clock In The main system clock. The MegaCore function operates on the rising
edge of the clock signal.

reset In
The MegaCore function is asynchronously reset when reset is asserted
high. The reset must be de-asserted synchronously with respect to the
rising edge of the clock signal.

din_data In din port Avalon-ST data bus. Pixel data is transferred into the MegaCore
function over this bus.
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 6: Signals 6–3
2D FIR Filter
2D FIR Filter
Table 6–4 shows the input and output signals for the 2D FIR Filter MegaCore function.

din_endofpacket In din port Avalon-ST endofpacket signal. This signal marks the end of an
Avalon-ST packet.

din_ready Out din port Avalon-ST ready signal. This signal indicates when the
MegaCore function is ready to receive data.

din_startofpacket In din port Avalon-ST startofpacket signal. This signal marks the start of
an Avalon-ST packet.

din_valid In din port Avalon-ST valid signal. This signal identifies the cycles when
the port should input data.

dout_data Out dout port Avalon-ST data bus. Pixel data is transferred out of the
MegaCore function over this bus.

dout_endofpacket Out dout port Avalon-ST endofpacket signal. This signal marks the end of
an Avalon-ST packet.

dout_ready In dout port Avalon-ST ready signal. This signal is asserted by the
downstream device when it is able to receive data.

dout_startofpacket Out dout port Avalon-ST startofpacket signal. This signal marks the start
of an Avalon-ST packet.

dout_valid Out dout port Avalon-ST valid signal. This signal is asserted when the
MegaCore function outputs data.

gamma_lut_av_address In gamma_lut slave port Avalon-MM address. Specifies a word offset into
the slave address space.

gamma_lut_av_chipselect In gamma_lut slave port Avalon-MM chipselect signal. The gamma_lut
port ignores all other signals unless this signal is asserted.

gamma_lut_av_readdata Out gamma_lut slave port Avalon-MM readdata bus. These output lines are
used for read transfers.

gamma_lut_av_write In gamma_lut slave port Avalon-MM write signal. When this signal is
asserted, the gamma_lut port accepts new data from the writedata bus.

gamma_lut_av_writedata In gamma_lut slave port Avalon-MM writedata bus. These input lines are
used for write transfers.

Table 6–3. Gamma Corrector Signals (Part 2 of 2)

Signal Direction Description

Table 6–4. 2D FIR Filter Signals (Part 1 of 2)

Signal Direction Description

clock In The main system clock. The MegaCore function operates on the rising edge of the
clock signal.

reset In
The MegaCore function is asynchronously reset when reset is asserted high.
The reset must be de-asserted synchronously with respect to the rising edge of
the clock signal.

din_data In din port Avalon-ST data bus. Pixel data is transferred into the MegaCore
function over this bus.

din_endofpacket In din port Avalon-ST endofpacket signal. This signal marks the end of an Avalon-
ST packet.
July 2010 Altera Corporation Video and Image Processing Suite User Guide

6–4 Chapter 6: Signals
2D Median Filter
2D Median Filter
Table 6–5 shows the input and output signals for the 2D Median Filter MegaCore
function.

din_ready Out din port Avalon-ST ready signal. This signal indicates when the MegaCore
function is ready to receive data.

din_startofpacket In din port Avalon-ST startofpacket signal. This signal marks the start of an
Avalon-ST packet.

din_valid In din port Avalon-ST valid signal. This signal identifies the cycles when the port
should input data.

dout_data Out dout port Avalon-ST data bus. Pixel data is transferred out of the MegaCore
function over this bus.

dout_endofpacket Out dout port Avalon-ST endofpacket signal. This signal marks the end of an
Avalon-ST packet.

dout_ready In dout port Avalon-ST ready signal. This signal is asserted by the downstream
device when it is able to receive data.

dout_startofpacket Out dout port Avalon-ST startofpacket signal. This signal marks the start of an
Avalon-ST packet.

dout_valid Out dout port Avalon-ST valid signal. This signal is asserted when the MegaCore
function outputs data.

Table 6–4. 2D FIR Filter Signals (Part 2 of 2)

Signal Direction Description

Table 6–5. 2D Median Filter Signals (Part 1 of 2)

Signal Direction Description

clock In The main system clock. The MegaCore function operates on the rising edge of the
clock signal.

reset In
The MegaCore function is asynchronously reset when reset is asserted high. The
reset must be de-asserted synchronously with respect to the rising edge of the
clock signal.

din_data In din port Avalon-ST data bus. Pixel data is transferred into the MegaCore function
over this bus.

din_endofpacket In din port Avalon-ST endofpacket signal. This signal marks the end of an Avalon-
ST packet.

din_ready Out din port Avalon-ST ready signal. This signal indicates when the MegaCore
function is ready to receive data.

din_startofpacket In din port Avalon-ST startofpacket signal. This signal marks the start of an
Avalon-ST packet.

din_valid In din port Avalon-ST valid signal. This signal identifies the cycles when the port
should input data.

dout_data Out dout port Avalon-ST data bus. Pixel data is transferred out of the MegaCore
function over this bus.

dout_endofpacket Out dout port Avalon-ST endofpacket signal. This signal marks the end of an
Avalon-ST packet.

dout_ready In dout port Avalon-ST ready signal. This signal is asserted by the downstream
device when it is able to receive data.
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 6: Signals 6–5
Alpha Blending Mixer
Alpha Blending Mixer
Table 6–6 shows the input and output signals for the Alpha Blending Mixer MegaCore
function.

dout_startofpacket Out dout port Avalon-ST startofpacket signal. This signal marks the start of an
Avalon-ST packet.

dout_valid Out dout port Avalon-ST valid signal. This signal is asserted when the MegaCore
function outputs data.

Table 6–5. 2D Median Filter Signals (Part 2 of 2)

Signal Direction Description

Table 6–6. Alpha Blending Mixer Signals (Part 1 of 2)

Signal Direction Description

clock In The main system clock. The MegaCore function operates on the rising
edge of the clock signal.

reset In
The MegaCore function is asynchronously reset when reset is asserted
high. The reset must be de-asserted synchronously with respect to the
rising edge of the clock signal.

alpha_in_N_data In alpha_in_N port Avalon-ST data bus for layer N. Pixel data is
transferred into the MegaCore function over this bus. (1)

alpha_in_N_endofpacket In alpha_in_N port Avalon-ST endofpacket signal. This signal marks the
end of an Avalon-ST packet. (1)

alpha_in_N_ready Out alpha_in_N port Avalon-ST alpha ready signal. This signal indicates
when the MegaCore function is ready to receive data. (1)

alpha_in_N_startofpacket In alpha_in_N port Avalon-ST startofpacket signal. This signal marks
the start of an Avalon-ST packet. (1)

alpha_in_N_valid In alpha_in_N port Avalon-ST alpha valid signal. This signal identifies
the cycles when the port should input data. (1)

control_av_address In control slave port Avalon-MM address bus. Specifies a word offset
into the slave address space.

control_av_chipselect In control slave port Avalon-MM chipselect signal. The control port
ignores all other signals unless this signal is asserted.

control_av_readdata Out control slave port Avalon-MM readdata bus. These output lines are
used for read transfers.

control_av_write In control slave port Avalon-MM write signal. When this signal is
asserted, the control port accepts new data from the writedata bus.

control_av_writedata In control slave port Avalon-MM writedata bus. These input lines are
used for write transfers.

din_N_data In din_N port Avalon-ST data bus for port din for layer N. Pixel data is
transferred into the MegaCore function over this bus.

din_N_endofpacket In din_N port Avalon-ST endofpacket signal. This signal marks the end of
an Avalon-ST packet.

din_N_ready Out din_N port Avalon-ST ready signal. This signal indicates when the
MegaCore function is ready to receive data.

din_N_startofpacket In din_N port Avalon-ST startofpacket signal. This signal marks the
start of an Avalon-ST packet.
July 2010 Altera Corporation Video and Image Processing Suite User Guide

6–6 Chapter 6: Signals
Scaler
Scaler
Table 6–7 shows the input and output signals for the Scaler MegaCore function.

din_N_valid In din_N port Avalon-ST valid signal. This signal identifies the cycles
when the port should input data.

dout_data Out dout port Avalon-ST data bus. Pixel data is transferred out of the
MegaCore function over this bus.

dout_endofpacket Out dout port Avalon-ST endofpacket signal. This signal marks the end of
an Avalon-ST packet.

dout_ready In dout port Avalon-ST ready signal. This signal is asserted by the
downstream device when it is able to receive data.

dout_startofpacket Out dout port Avalon-ST startofpacket signal. This signal marks the start
of an Avalon-ST packet.

dout_valid Out dout port Avalon-ST valid signal. This signal is asserted when the
MegaCore function outputs data.

Note to Table 6–6

(1) These ports are present only if Alpha blending is on in the MegaWizard interface. Note that alpha channel ports are created for layer zero even
though no alpha mixing is possible for layer zero (the background layer). These ports are ignored and can safely be left unconnected or tied to 0.

Table 6–6. Alpha Blending Mixer Signals (Part 2 of 2)

Signal Direction Description

Table 6–7. Scaler Signals (Part 1 of 2)

Signal Direction Description

clock In The main system clock. The MegaCore function operates on the rising edge
of the clock signal.

reset In
The MegaCore function is asynchronously reset when reset is asserted
high. The reset must be de-asserted synchronously with respect to the
rising edge of the clock signal.

control_av_address In control slave port Avalon-MM address bus. Specifies a word offset into
the slave address space. (1)

control_av_chipselect In control slave port Avalon-MM chipselect signal. The control port
ignores all other signals unless this signal is asserted. (1)

control_av_readdata Out control slave port Avalon-MM readdata bus. These output lines are used
for read transfers. (1)

control_av_waitrequest Out control slave port Avalon-MM waitrequest signal. (1)

control_av_write In control slave port Avalon-MM write signal. When this signal is asserted,
the control port accepts new data from the writedata bus. (1)

control_av_writedata In control slave port Avalon-MM writedata bus. These input lines are used
for write transfers. (1)

din_data In din port Avalon-ST data bus. Pixel data is transferred into the MegaCore
function over this bus.

din_endofpacket In din port Avalon-ST endofpacket signal. This signal marks the end of an
Avalon-ST packet.

din_ready Out din port Avalon-ST ready signal. This signal indicates when the MegaCore
function is ready to receive data.
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 6: Signals 6–7
Clipper
Clipper
Table 6–8 shows the input and output signals for the Clipper MegaCore function.

din_startofpacket In din port Avalon-ST startofpacket signal. This signal marks the start of
an Avalon-ST packet.

din_valid In din port Avalon-ST valid signal. This signal identifies the cycles when the
port should input data.

dout_data Out dout port Avalon-ST data bus. Pixel data is transferred out of the
MegaCore function over this bus.

dout_endofpacket Out dout port Avalon-ST endofpacket signal. This signal marks the end of an
Avalon-ST packet.

dout_ready In dout port Avalon-ST ready signal. This signal is asserted by the
downstream device when it is able to receive data.

dout_startofpacket Out dout port Avalon-ST startofpacket signal. This signal marks the start of
an Avalon-ST packet.

dout_valid Out dout port Avalon-ST valid signal. This signal is asserted when the
MegaCore function outputs data.

Note to Table 6–7

(1) These ports are present only if Run-time control of image size is on in the MegaWizard interface.

Table 6–7. Scaler Signals (Part 2 of 2)

Signal Direction Description

Table 6–8. Clipper Signals (Part 1 of 2)

Signal Direction Description

clock In The main system clock. The MegaCore function operates on the rising edge
of the clock signal.

reset In
The MegaCore function is asynchronously reset when reset is asserted
high. The reset must be de-asserted synchronously with respect to the
rising edge of the clock signal.

control_av_address In control slave port Avalon-MM address bus. Specifies a word offset into
the slave address space. (1)

control_av_chipselect In control slave port Avalon-MM chipselect signal. The control port
ignores all other signals unless this signal is asserted. (1)

control_av_readdata Out control slave port Avalon-MM readdata bus. These output lines are used
for read transfers. (1)

control_av_waitrequest Out control slave port Avalon-MM waitrequest signal. (1)

control_av_write In control slave port Avalon-MM write signal. When this signal is asserted,
the control port accepts new data from the writedata bus. (1)

control_av_writedata In control slave port Avalon-MM writedata bus. These input lines are used
for write transfers. (1)

din_data In din port Avalon-ST data bus. Pixel data is transferred into the MegaCore
function over this bus.

din_endofpacket In din port Avalon-ST endofpacket signal. This signal marks the end of an
Avalon-ST packet.

din_ready Out din port Avalon-ST ready signal. This signal indicates when the MegaCore
function is ready to receive data.
July 2010 Altera Corporation Video and Image Processing Suite User Guide

6–8 Chapter 6: Signals
Deinterlacer
Deinterlacer
Table 6–9 shows the input and output signals for the Deinterlacer MegaCore function.

din_startofpacket In din port Avalon-ST startofpacket signal. This signal marks the start of
an Avalon-ST packet.

din_valid In din port Avalon-ST valid signal. This signal identifies the cycles when the
port should input data.

dout_data Out din port Avalon-ST data bus. Pixel data is transferred out of the MegaCore
function over this bus.

dout_endofpacket Out dout port Avalon-ST endofpacket signal. This signal marks the end of an
Avalon-ST packet.

dout_ready In dout port Avalon-ST ready signal. This signal is asserted by the
downstream device when it is able to receive data.

dout_startofpacket Out dout port Avalon-ST startofpacket signal. This signal marks the start of
an Avalon-ST packet.

dout_valid Out dout port Avalon-ST valid signal. This signal is asserted when the
MegaCore function outputs data.

Note to Table 6–8

(1) These ports are present only if Include Avalon-MM interface is on in the MegaWizard interface.

Table 6–8. Clipper Signals (Part 2 of 2)

Signal Direction Description

Table 6–9. Deinterlacer Signals (Part 1 of 3)

Signal Direction Description

clock In The main system clock. The MegaCore function operates
on the rising edge of the clock signal.

reset In

The MegaCore function is asynchronously reset when
reset is asserted high. The reset must be de-asserted
synchronously with respect to the rising edge of the clock
signal.

din_data In din port Avalon-ST data bus. Pixel data is transferred into
the MegaCore function over this bus.

din_endofpacket In din port Avalon-ST endofpacket signal. This signal
marks the end of an Avalon-ST packet.

din_ready Out din port Avalon-ST ready signal. This signal indicates
when the MegaCore function is ready to receive data.

din_startofpacket In din port Avalon-ST startofpacket signal. This signal
marks the start of an Avalon-ST packet.

din_valid In din port Avalon-ST valid signal. This signal identifies the
cycles when the port should input data.

dout_data Out dout port Avalon-ST data bus. Pixel data is transferred
out of the MegaCore function over this bus.

dout_endofpacket Out dout port Avalon-ST endofpacket signal. This signal
marks the end of an Avalon-ST packet.

dout_ready In dout port Avalon-ST ready signal. This signal is asserted
by the downstream device when it is able to receive data.
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 6: Signals 6–9
Deinterlacer
dout_startofpacket Out dout port Avalon-ST startofpacket signal. This signal
marks the start of an Avalon-ST packet.

dout_valid Out dout port Avalon-ST valid signal. This signal is asserted
when the MegaCore function outputs data.

ker_writer_control_av_address In
ker_writer_control slave port Avalon-MM address
bus. Specifies a word offset into the slave address space.
(6)

ker_writer_control_av_chipselect In
ker_writer_control slave port Avalon-MM
chipselect signal. The ker_writer_control port
ignores all other signals unless this signal is asserted. (6)

ker_writer_control_av_readdata Out ker_writer_control slave port Avalon-MM readdata
bus. These output lines are used for read transfers. (6)

ker_writer_control_av_waitrequest Out ker_writer_control slave port Avalon-MM
waitrequest signal. (6)

ker_writer_control_av_write In
ker_writer_control slave port Avalon-MM write
signal. When asserted, the ker_writer_control port
accepts new data from the writedata bus. (6)

ker_writer_control_av_writedata In ker_writer_control slave port Avalon-MM writedata
bus. These input lines are used for write transfers. (6)

ma_control_av_address In ma_control slave port Avalon-MM address bus.
Specifies a word offset into the slave address space. (5)

ma_control_av_chipselect In
ma_control slave port Avalon-MM chipselect signal.
The ma_control port ignores all other signals unless this
signal is asserted. (5)

ma_control_av_readdata Out ma_control slave port Avalon-MM readdata bus. These
output lines are used for read transfers. (5)

ma_control_av_waitrequest Out ma_control slave port Avalon-MM waitrequest signal.
(5)

ma_control_av_write In
ma_control slave port Avalon-MM write signal. When
asserted, the ma_control port accepts new data from the
writedata bus. (5)

ma_control_av_writedata In ma_control slave port Avalon-MM writedata bus. These
input lines are used for write transfers. (5)

read_master_N_av_address Out
read_master_N port Avalon-MM address bus. Specifies
a byte address in the Avalon-MM address space. (1), (2),
(3)

read_master_N_av_burstcount Out
read_master_N port Avalon-MM burstcount signal.
Specifies the number of transfers in each burst. (1), (2),
(3)

read_master_N_av_clock In read_master_N port clock signal. The interface operates
on the rising edge of the clock signal. (1), (2), (3), (4)

read_master_N_av_read Out
read_master_N port Avalon-MM read signal. Asserted to
indicate read requests from the master to the system
interconnect fabric. (1), (2), (3)

read_master_N_av_readdata In read_master_N port Avalon-MM readdata bus. These
input lines carry data for read transfers. (1), (2), (3)

Table 6–9. Deinterlacer Signals (Part 2 of 3)

Signal Direction Description
July 2010 Altera Corporation Video and Image Processing Suite User Guide

6–10 Chapter 6: Signals
Deinterlacer
read_master_N_av_readdatavalid In
read_master_N port Avalon-MM readdatavalid signal.
This signal is asserted by the system interconnect fabric
when requested read data has arrived. (1), (2), (3)

read_master_N_av_reset In

read_master_N port reset signal. The interface is
asynchronously reset when reset is asserted high and must
be de-asserted synchronously with respect to the rising
edge of the clock signal. (1), (2), (3), (4)

read_master_N_av_waitrequest In
read_master_N port Avalon-MM waitrequest signal.
Asserted by the system interconnect fabric to cause the
master port to wait. (1), (2), (3)

write_master_av_address Out write_master port Avalon-MM address bus. Specifies a
byte address in the Avalon-MM address space. (1), (3)

write_master_av_burstcount Out
write_master port Avalon-MM burstcount signal.
Specifies the number of transfers in each burst. (1), (2),
(3)

write_master_av_clock In write_master port clock signal. The interface operates on
the rising edge of the clock signal. (1), (3), (4)

write_master_av_reset In

write_master port reset signal. The interface is
asynchronously reset when reset is asserted high and must
be de-asserted synchronously with respect to the rising
edge of the clock signal. (1), (3), (4)

write_master_av_waitrequest In
write_master port Avalon-MM waitrequest signal.
Asserted by the system interconnect fabric to cause the
master port to wait. (1), (3)

write_master_av_write Out
write_master port Avalon-MM write signal. Asserted to
indicate write requests from the master to the system
interconnect fabric. (1), (3)

write_master_av_writedata Out write_master port Avalon-MM writedata bus. These
output lines carry data for write transfers. (1), (3)

Note to Table 6–9:

(1) The signals associated with the write_master and read_master ports are present only when buffering is used.
(2) When the motion-adaptive algorithm is selected, two read master interfaces are used.
(3) When the motion-adaptive algorithm is selected and motion bleed is turned on, one additional read master (motion_read_master) and one

additional write master (motion_write_master) port are used to read and update motion values.
(4) Additional clock and reset signals are available when Use separate clocks for the Avalon-MM master interfaces is on in the MegaWizard

interface.
(5) The signals associated with the ma_control port are not present unless run-time control of the motion adaptive blending is enabled.
(6) The signals associated with the ker_writer_control port are not present unless run-time control for locked frame rate conversion is enabled.

Table 6–9. Deinterlacer Signals (Part 3 of 3)

Signal Direction Description
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 6: Signals 6–11
Interlacer
Interlacer
Table 6–8 shows the input and output signals for the Interlacer MegaCore function.

Table 6–10. Interlacer Signals

Signal Direction Description

clock In The main system clock. The MegaCore function operates on the rising edge
of the clock signal.

reset In
The MegaCore function is asynchronously reset when reset is asserted
high. The reset must be de-asserted synchronously with respect to the
rising edge of the clock signal.

control_av_address In control slave port Avalon-MM address bus. Specifies a word offset into
the slave address space. (1)

control_av_chipselect In control slave port Avalon-MM chipselect signal. The control port
ignores all other signals unless this signal is asserted. (1)

control_av_readdata Out control slave port Avalon-MM readdata bus. These output lines are used
for read transfers. (1)

control_av_waitrequest Out control slave port Avalon-MM waitrequest signal. (1)

control_av_write In control slave port Avalon-MM write signal. When this signal is asserted,
the control port accepts new data from the writedata bus. (1)

control_av_writedata In control slave port Avalon-MM writedata bus. These input lines are used
for write transfers. (1)

din_data In din port Avalon-ST data bus. Pixel data is transferred into the MegaCore
function over this bus.

din_endofpacket In din port Avalon-ST endofpacket signal. This signal marks the end of an
Avalon-ST packet.

din_ready Out din port Avalon-ST ready signal. This signal indicates when the MegaCore
function is ready to receive data.

din_startofpacket In din port Avalon-ST startofpacket signal. This signal marks the start of
an Avalon-ST packet.

din_valid In din port Avalon-ST valid signal. This signal identifies the cycles when the
port should input data.

dout_data Out din port Avalon-ST data bus. Pixel data is transferred out of the MegaCore
function over this bus.

dout_endofpacket Out dout port Avalon-ST endofpacket signal. This signal marks the end of an
Avalon-ST packet.

dout_ready In dout port Avalon-ST ready signal. This signal is asserted by the
downstream device when it is able to receive data.

dout_startofpacket Out dout port Avalon-ST startofpacket signal. This signal marks the start of
an Avalon-ST packet.

dout_valid Out dout port Avalon-ST valid signal. This signal is asserted when the
MegaCore function outputs data.

Note to Table 6–8

(1) These ports are present only if Pass-through mode is on in the MegaWizard interface.
July 2010 Altera Corporation Video and Image Processing Suite User Guide

6–12 Chapter 6: Signals
Frame Reader
Frame Reader
Table 6–11 shows the input and output signals for the Frame Reader MegaCore
function.

Table 6–11. Frame Reader Signals (Part 1 of 2)

Signal Direction Description

clock In The main system clock. The MegaCore function operates on the
rising edge of the clock signal.

reset In
The MegaCore function is asynchronously reset when reset is
asserted high. The reset must be de-asserted synchronously with
respect to the rising edge of the clock signal.

dout_data Out dout port Avalon-ST data bus. Pixel data is
transferred out of the MegaCore function over this bus.

dout_endofpacke Out dout port Avalon-ST endofpacket signal. This signal
marks the end of an Avalon-ST packet.

dout_ready In dout port Avalon-ST ready signal. This signal is
asserted by the downstream device when it is able to receive data.

dout_startofpacket Out dout port Avalon-ST startofpacket signal. This
signal marks the start of an Avalon-ST packet.

dout_valid Out dout port Avalon-ST valid signal. This signal is
asserted when the MegaCore function outputs data.

slave_av_address In slave port Avalon-MM address. Specifies a word offset
into the slave address space.

slave_av_read In slave port Avalon-MM read signal. When this signal is
asserted, the slave port drives new data onto the read data bus.

slave_av_readdata Out slave port Avalon-MM readdata bus. These output
lines are used for read transfers.

slave_av_write In
slave port Avalon-MM write signal. When this signal is
asserted, the gamma_lut port accepts new data from the
writedata bus.

slave_av_writedata In slave port Avalon-MM writedata bus. These input
lines are used for write transfers.

slave_av_irq Out

slave port Avalon-MM interrupt signal. When
asserted the interrupt registers of the MegaCore function have
been updated and the master should read them to determine what
has occurred.

master_av_address Out master port Avalon-MM address bus. Specifies a byte
address in the Avalon-MM address space.

master_av_burstcount Out master port Avalon-MM burstcount signal. Specifies
the number of transfers in each burst.

master_av_read Out
master port Avalon-MM read signal. Asserted to
indicate read requests from the master to the system interconnect
fabric.

master_av_readdata In master port Avalon-MM readdata bus. These input
lines carry data for read transfers.

master_av_readdatavalid In
master port Avalon-MM readdatavalid signal. This
signal is asserted by the system interconnect fabric when the
requested read data has arrived.
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 6: Signals 6–13
Frame Buffer
Frame Buffer
Table 6–12 shows the input and output signals for the Frame Buffer MegaCore
function.

master_av_waitrequest In
master port Avalon-MM waitrequest signal.
Asserted by the system interconnect fabric to cause the master
port to wait.

master_av_reset In

master port reset signal. The interface is reset
asynchronously when this signal is asserted high and must be de-
asserted synchronously with respect to the rising edge of the
clock signal.

master_av_clock In master port The clock signal. The interface operates on
the rising edge of the clock signal.

Table 6–11. Frame Reader Signals (Part 2 of 2)

Signal Direction Description

Table 6–12. Frame Buffer Signals (Part 1 of 3)

Signal Direction Description

clock In The main system clock. The MegaCore function operates on the
rising edge of the clock signal.

reset In
The MegaCore function is asynchronously reset when reset is
asserted high. The reset must be de-asserted synchronously with
respect to the rising edge of the clock signal.

din_data In din port Avalon-ST data bus. Pixel data is transferred into the
MegaCore function over this bus.

din_endofpacket In din port Avalon-ST endofpacket signal. This signal marks the
end of an Avalon-ST packet.

din_ready Out din port Avalon-ST ready signal. This signal indicates when the
MegaCore function is ready to receive data.

din_startofpacket In din port Avalon-ST startofpacket signal. This signal marks the
start of an Avalon-ST packet.

din_valid In din port Avalon-ST valid signal. This signal identifies the cycles
when the port should input data.

dout_data Out dout port Avalon-ST data bus. Pixel data is transferred out of the
MegaCore function over this bus.

dout_endofpacket Out dout port Avalon-ST endofpacket signal. This signal marks the
end of an Avalon-ST packet.

dout_ready In dout port Avalon-ST ready signal. This signal is asserted by the
downstream device when it is able to receive data.

dout_startofpacket Out dout port Avalon-ST startofpacket signal. This signal marks
the start of an Avalon-ST packet.

dout_valid Out dout port Avalon-ST valid signal. This signal is asserted when
the MegaCore function is outputs data.

read_master_av_address Out read_master port Avalon-MM address bus. Specifies a byte
address in the Avalon-MM address space.

read_master_av_burstcount Out read_master port Avalon-MM burstcount signal. Specifies the
number of transfers in each burst.
July 2010 Altera Corporation Video and Image Processing Suite User Guide

6–14 Chapter 6: Signals
Frame Buffer
read_master_av_clock In read_master port The clock signal. The interface operates on the
rising edge of the clock signal. (1)

read_master_av_read Out read_master port Avalon-MM read signal. Asserted to indicate
read requests from the master to the system interconnect fabric.

read_master_av_readdata In read_master port Avalon-MM readdata bus. These input lines
carry data for read transfers.

read_master_av_readdatavalid In
read_master port Avalon-MM readdatavalid signal. This
signal is asserted by the system interconnect fabric when the
requested read data has arrived.

read_master_av_reset In

read_master port reset signal. The interface is reset
asynchronously when this signal is asserted high and must be de-
asserted synchronously with respect to the rising edge of the
clock signal. (1)

read_master_av_waitrequest In
read_master port Avalon-MM waitrequest signal. Asserted by
the system interconnect fabric to cause the master port to
wait. (2)

reader_control_av_chipselect In
reader_control slave port Avalon-MM chipselect signal. The
reader_control port ignores all other signals unless this signal
is asserted. (2)

reader_control_av_readdata Out reader_control slave port Avalon-MM readdata bus. These
output lines are used for read transfers. (2)

reader_control_av_write In
reader_control slave port Avalon-MM write signal. When this
signal is asserted, the reader_control port accepts new data
from the writedata bus. (2)

reader_control_av_writedata In reader_control slave port Avalon-MM writedata bus. These
input lines are used for write transfers. (2)

write_master_av_address Out write_master port Avalon-MM address bus. Specifies a byte
address in the Avalon-MM address space.

write_master_av_burstcount Out write_master port Avalon-MM burstcount signal. Specifies
the number of transfers in each burst.

write_master_av_clock In write_master port clock signal. The interface operates on the
rising edge of the clock signal. (1)

write_master_av_reset In

write_master port reset signal. The interface is reset
asynchronously when this signal is asserted high and must be de-
asserted synchronously with respect to the rising edge of the
clock signal. (1)

write_master_av_waitrequest In write_master port Avalon-MM waitrequest signal. Asserted
by the system interconnect fabric to cause the master port to wait.

write_master_av_write Out
write_master port Avalon-MM write signal. Asserted to
indicate write requests from the master to the system interconnect
fabric.

write_master_av_writedata Out write_master port Avalon-MM writedata bus. These output
lines carry data for write transfers.

writer_control_av_chipselect In
writer_control slave port Avalon-MM chipselect signal. The
writer_control port ignores all other signals unless this signal
is asserted. (3)

Table 6–12. Frame Buffer Signals (Part 2 of 3)

Signal Direction Description
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 6: Signals 6–15
Clocked Video Input
Clocked Video Input
Table 6–13 shows the input and output signals for the Clocked Video Input MegaCore
function.

writer_control_av_readdata Out writer_control slave port Avalon-MM readdata bus. These
output lines are used for read transfers. (3)

writer_control_av_write In
writer_control slave port Avalon-MM write signal. When this
signal is asserted, the writer_control port accepts new data
from the writedata bus. (3)

writer_control_av_writedata In writer_control slave port Avalon-MM writedata bus. These
input lines are used for write transfers. (3)

Notes to Table 6–12:

(1) Additional clock and reset signals are available when Use separate clocks for the Avalon-MM master interfaces is on in the MegaWizard
interface.

(2) These ports are present only if the control interface for the reader component has been enabled.
(3) These ports are present only if the control interface for the writer component has been enabled

Table 6–12. Frame Buffer Signals (Part 3 of 3)

Signal Direction Description

Table 6–13. Clocked Video Input Signals (Part 1 of 2)

Signal Direction Description

rst In
The MegaCore function is asynchronously reset when rst is asserted high. The
reset must be de-asserted synchronously with respect to the rising edge of the
is_clk signal.

vid_clk In Clocked video clock. All the video input signals are synchronous to this clock.

av_address In control slave port Avalon-MM address bus. Specifies a word offset into the slave
address space. (1)

av_read In control slave port Avalon-MM read signal. When this signal is asserted, the
control port drives new data onto the read data bus. (1)

av_readdata Out control slave port Avalon-MM read data bus. These output lines are used for read
transfers. (1)

av_write In control slave port Avalon-MM write signal. When this signal is asserted, the
control port accepts new data from the write data bus. (1)

av_writedata In control slave port Avalon-MM write data bus. These input lines are used for write
transfers. (1)

is_clk In Clock signal for Avalon-ST ports dout and control. The MegaCore function
operates on the rising edge of the is_clk signal.

is_data Out dout port Avalon-ST data bus. Pixel data is transferred out of the MegaCore
function over this bus.

is_eop Out dout port Avalon-ST endofpacket signal. This signal is asserted when the
MegaCore function is ending a frame.

is_ready In dout port Avalon-ST ready signal. This signal is asserted by the downstream device
when it is able to receive data.

is_sop Out dout port Avalon-ST startofpacket signal. This signal is asserted when the
MegaCore function is starting a new frame.

is_valid Out dout port Avalon-ST valid signal. This signal is asserted when the MegaCore
function outputs data.
July 2010 Altera Corporation Video and Image Processing Suite User Guide

6–16 Chapter 6: Signals
Clocked Video Input
overflow Out
Clocked video overflow signal. A signal corresponding to the overflow sticky bit of
the Status register synchronized to vid_clk. This signal is for information only
and no action is required if it is asserted. (1)

refclk_div Out
A divided down version of vid_clk (refclk). Setting the Refclk Divider register
to be the number of samples in a line produces a horizontal reference on this signal
that a PLL can use to synchronize its output clock.

sof Out

Start of frame signal. A change of 0 to 1 indicates the start of the video frame as
configured by the SOF registers. Connecting this signal to a Clocked Video Output
MegaCore function allows the function to synchronize its output video to this
signal.

sof_locked Out Start of frame locked signal. When high the sof signal is valid and can be used.

status_update_int Out
control slave port Avalon-MM interrupt signal. When asserted the status registers
of the MegaCore function have been updated and the master should read them to
determine what has occurred. (1)

vid_data In Clocked video data bus. Video data is transferred into the MegaCore function over
this bus.

vid_datavalid In Clocked video data valid signal. This signal is asserted when a valid sample of video
data is present on vid_data.

vid_f In
(Separate Synchronization Mode Only.) Clocked video field signal. For interlaced
input, this signal distinguishes between field 0 and field 1. For progressive video,
this signal should be deasserted.

vid_h_sync In
(Separate Synchronization Mode Only.) Clocked video horizontal synchronization
signal. This signal is asserted during the horizontal synchronization period of the
video stream.

vid_hd_sdn In
Clocked video color plane format selection signal (in run-time switching of color
plane transmission formats mode only). This signal distinguishes between
sequential (when low) and parallel (when high) color plane formats.

vid_locked In Clocked video locked signal. This signal is asserted when a stable video stream is
present on the input. This signal is de-asserted when the video stream is removed.

vid_std In Video Standard bus. Can be connected to the rx_std signal of the SDI MegaCore
function (or any other interface) to read from the Standard register.

vid_v_sync In
(Separate Synchronization Mode Only.) Clocked video vertical synchronization
signal. This signal is asserted during the vertical synchronization period of the video
stream.

Note to Table 6–13

(1) These ports are present only if Use control port is on in the MegaWizard interface.

Table 6–13. Clocked Video Input Signals (Part 2 of 2)

Signal Direction Description
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 6: Signals 6–17
Clocked Video Output
Clocked Video Output
Table 6–14 shows the input and output signals for the Clocked Video Output
MegaCore function.

Table 6–14. Clocked Video Output Signals (Part 1 of 2)

Signal Direction Description

rst In
The MegaCore function is asynchronously reset when rst is asserted high. The
reset must be de-asserted synchronously with respect to the rising edge of the
is_clk signal.

vid_clk In Clocked video clock. All the video input signals are synchronous to this clock.

av_address In control slave port Avalon-MM address bus. Specifies a word offset into the slave
address space. (1)

av_read In control slave port Avalon-MM read signal. When this signal is asserted, the
control port drives new data onto the read data bus. (1)

av_readdata Out control slave port Avalon-MM readdata bus. These output lines are used for
read transfers. (1)

av_waitrequest Out control slave port Avalon-MM waitrequest bus. When this signal is asserted,
the control port cannot accept new transactions. (1)

av_write In control slave port Avalon-MM write signal. When this signal is asserted, the
control port accepts new data from the write data bus. (1)

av_writedata In control slave port Avalon-MM writedata bus. These input lines are used for
write transfers. (1)

is_clk In Clock signal for Avalon-ST ports dout and control. The MegaCore function
operates on the rising edge of the is_clk signal.

is_data In dout port Avalon-ST data bus. Pixel data is transferred into the MegaCore function
over this bus.

is_eop In dout port Avalon-ST endofpacket signal. This signal is asserted when the
downstream device is ending a frame.

is_ready Out dout port Avalon-ST ready signal. This signal is asserted when the MegaCore
function is able to receive data.

is_sop In dout port Avalon-ST startofpacket signal. This signal is asserted when the
downstream device is starting a new frame.

is_valid In dout port Avalon-ST valid signal. This signal is asserted when the downstream
device outputs data.

sof In
Start of frame signal. A rising edge (0 to 1) indicates the start of the video frame as
configured by the SOF registers. Connecting this signal to a Clocked Video Input
MegaCore function allows the output video to be synchronized to this signal.

sof_locked Out Start of frame locked signal. When high the sof signal is valid and can be used.

status_update_int Out
control slave port Avalon-MM interrupt signal. When asserted the status registers
of the MegaCore function have been updated and the master should read them to
determine what has occurred. (1)

underflow Out
Clocked video underflow signal. A signal corresponding to the underflow sticky bit
of the Status register synchronized to vid_clk. This signal is for information only
and no action is required if it is asserted. (1)

vcoclk_div Out
A divided down version of vid_clk (vcoclk). Setting the Vcoclk Divider
register to be the number of samples in a line produces a horizontal reference on
this signal that a PLL can use to synchronize its output clock.
July 2010 Altera Corporation Video and Image Processing Suite User Guide

6–18 Chapter 6: Signals
Color Plane Sequencer
Color Plane Sequencer
Table 6–15 shows the input and output signals for the Color Plane Sequencer
MegaCore function.

vid_data Out Clocked video data bus. Video data is transferred into the MegaCore function over
this bus.

vid_datavalid Out (Separate Synchronization mode Only.) Clocked video data valid signal. This signal
is asserted when an active picture sample of video data is present on vid_data.

vid_f Out
(Separate Synchronization Mode Only.) Clocked video field signal. For interlaced
input, this signal distinguishes between field 0 and field 1. For progressive video,
this signal is unused.

vid_h Out (Separate Synchronization Mode Only.) Clocked video horizontal blanking signal.
This signal is asserted during the horizontal blanking period of the video stream.

vid_h_sync Out
(Separate Synchronization Mode Only.) Clocked video horizontal synchronization
signal. This signal is asserted during the horizontal synchronization period of the
video stream.

vid_ln Out
(Embedded Synchronization Mode Only.) Clocked video line number signal. Used
with the SDI MegaCore function to indicate the current line number when the
vid_trs signal is asserted.

vid_mode_change Out Clocked video mode change signal. This signal is asserted on the cycle before a
mode change occurs.

vid_sof Out Start of frame signal. A rising edge (0 to 1) indicates the start of the video frame as
configured by the SOF registers.

vid_sof_locked Out Start of frame locked signal. When high the vid_sof signal is valid and can be
used.

vid_std Out Video standard bus. Can be connected to the tx_std signal of the SDI MegaCore
function (or any other interface) to set the Standard register.

vid_trs Out (Embedded Synchronization Mode Only.) Clocked video time reference signal (TRS)
signal. Used with the SDI MegaCore function to indicate a TRS, when asserted.

vid_v Out (Separate Synchronization Mode Only.) Clocked video vertical blanking signal. This
signal is asserted during the vertical blanking period of the video stream.

vid_v_sync Out
(Separate Synchronization Mode Only.) Clocked video vertical synchronization
signal. This signal is asserted during the vertical synchronization period of the video
stream.

Note to Table 6–14

(1) These ports are present only if Use control port is on in the MegaWizard interface.

Table 6–14. Clocked Video Output Signals (Part 2 of 2)

Signal Direction Description

Table 6–15. Color Plane Sequencer Signals (Part 1 of 2)

Signal Direction Description

clock In The main system clock. The MegaCore function operates on the rising edge of
the clock signal.

reset In
The MegaCore function is asynchronously reset when reset is asserted high.
The reset must be de-asserted synchronously with respect to the rising edge of
the clock signal.
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 6: Signals 6–19
Test Pattern Generator
Test Pattern Generator
Table 6–16 shows the input and output signals for the Test Pattern Generator
MegaCore function.

dinN_data In dinN port Avalon-ST data bus. Pixel data is transferred into the MegaCore
function over this bus.

dinN_endofpacket In dinN port Avalon-ST endofpacket signal. This signal marks the end of an
Avalon-ST packet.

dinN_ready Out dinN port Avalon-ST ready signal. This signal indicates when the MegaCore
function is ready to receive data.

dinN_startofpacket In dinN port Avalon-ST startofpacket signal. This signal marks the start of an
Avalon-ST packet.

dinN_valid In dinN port Avalon-ST valid signal. This signal identifies the cycles when the
port should input data.

doutN_data Out doutN port Avalon-ST data bus. Pixel data is transferred out of the MegaCore
function over this bus.

doutN_endofpacket Out doutN port Avalon-ST endofpacket signal. This signal marks the end of an
Avalon-ST packet.

doutN_ready In doutN port Avalon-ST ready signal. This signal is asserted by the downstream
device when it is able to receive data.

doutN_startofpacket Out doutN port Avalon-ST startofpacket signal. This signal marks the start of an
Avalon-ST packet.

doutN_valid Out doutN port Avalon-ST valid signal. This signal is asserted when the MegaCore
function outputs data.

Table 6–15. Color Plane Sequencer Signals (Part 2 of 2)

Signal Direction Description

Table 6–16. Test Pattern Generator Signals (Part 1 of 2)

Signal Direction Description

clock In The main system clock. The MegaCore function operates on the rising edge
of the clock signal.

reset In
The MegaCore function is asynchronously reset when reset is asserted
high. The reset must be de-asserted synchronously with respect to the rising
edge of the clock signal.

control_av_address In control slave port Avalon-MM address bus. Specifies a word offset into
the slave address space. (1)

control_av_chipselect In control slave port Avalon-MM chipselect signal. The control port
ignores all other signals unless this signal is asserted. (1)

control_av_readdata Out control slave port Avalon-MM readdata bus. These output lines are used
for read transfers. (1)

control_av_write In control slave port Avalon-MM write signal. When this signal is asserted,
the control port accepts new data from the writedata bus. (1)

control_av_writedata In control slave port Avalon-MM writedata bus. These input lines are used
for write transfers. (1)

dout_data Out dout port Avalon-ST data bus. Pixel data is transferred out of the MegaCore
function over this bus.
July 2010 Altera Corporation Video and Image Processing Suite User Guide

6–20 Chapter 6: Signals
Control Synchronizer
Control Synchronizer
Table 6–17 shows the input and output signals for the Control Synchronizer
MegaCore function.

dout_endofpacket Out dout port Avalon-ST endofpacket signal. This signal marks the end of an
Avalon-ST packet.

dout_ready In dout port Avalon-ST ready signal. This signal is asserted by the
downstream device when it is able to receive data.

dout_startofpacket Out dout port Avalon-ST startofpacket signal. This signal marks the start of
an Avalon-ST packet.

dout_valid Out dout port Avalon-ST valid signal. This signal is asserted when the
MegaCore function outputs data.

Note to Table 6–16

(1) These ports are present only if Runtime control of image size is on in the MegaWizard interface.

Table 6–16. Test Pattern Generator Signals (Part 2 of 2)

Signal Direction Description

Table 6–17. Control Synchronizer Signals (Part 1 of 2)

Signal Direction Description

clock In The main system clock. The MegaCore function operates on the rising edge of
the clock signal.

reset In
The MegaCore function is asynchronously reset when reset is asserted high.
The reset must be de-asserted synchronously with respect to the rising edge of
the clock signal.

din_data In din port Avalon-ST data bus. Pixel data is transferred into the
MegaCore function over this bus.

din_endofpacket In din port Avalon-ST endofpacket signal. This signal marks the end
of an Avalon-ST packet.

din_ready Out din port Avalon-ST ready signal. This signal indicates when the
MegaCore function is ready to receive data.

din_startofpacket In din port Avalon-ST startofpacket signal. This signal marks the
start of an Avalon-ST packet.

din_valid In din port Avalon-ST valid signal. This signal identifies the cycles
when the port should input data.

dout_data Out dout port Avalon-ST data bus. Pixel data is transferred out of the
MegaCore function over this bus.

dout_endofpacket Out dout port Avalon-ST endofpacket signal. This signal marks the
end of an Avalon-ST packet.

dout_ready in dout port Avalon-ST ready signal. This signal is asserted by the
downstream device when it is able to receive data.

dout_startofpacket Out dout port Avalon-ST startofpacket signal. This signal marks
the start of an Avalon-ST packet.

dout_valid Out dout port Avalon-ST valid signal. This signal is asserted when the
MegaCore function is outputs data.

slave_av_address In slave port Avalon-MM address. Specifies a word offset into the slave
address space.
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 6: Signals 6–21
Switch
Switch
Table 6–18 shows the input and output signals for the Switch MegaCore function.

slave_av_read In slave port Avalon-MM read signal. When this signal is asserted, the
slave port drives new data onto the read data bus.

slave_av_readdata Out slave port Avalon-MM readdata bus. These output lines are used
for read transfers.

slave_av_write In slave port Avalon-MM write signal. When this signal is asserted,
the gamma_lut port accepts new data from the writedata bus.

slave_av_writedata In slave port Avalon-MM writedata bus. These input lines are used
for write transfers.

status_update_int_w Out
slave port Avalon-MM interrupt signal. When asserted the
interrupt registers of the MegaCore function have been updated and the master
should read them to determine what has occurred.

master_av_address Out master port Avalon-MM address bus. Specifies a byte address in
the Avalon-MM address space.

master_av_writedata Out master port Avalon-MM writedata bus. These output lines carry
data for write transfers.

master_av_write Out master port Avalon-MM write signal. Asserted to indicate write
requests from the master to the system interconnect fabric.

master_av_waitrequest In master port Avalon-MM waitrequest signal. Asserted by the system
interconnect fabric to cause the master port to wait.

Table 6–17. Control Synchronizer Signals (Part 2 of 2)

Signal Direction Description

Table 6–18. Switch Signals (Part 1 of 2)

Signal Direction Description

clock In The main system clock. The MegaCore function operates on the rising
edge of the clock signal.

reset In
The MegaCore function is asynchronously reset when reset is
asserted high. The reset must be de-asserted synchronously with
respect to the rising edge of the clock signal.

alpha_in_N_data In alpha_in_N port Avalon-ST data bus. Pixel data is transferred into
the MegaCore function over this bus. (1)

alpha_in_N_endofpacket In alpha_in_N port Avalon-ST endofpacket signal. This signal marks
the end of an Avalon-ST packet. (1)

alpha_in_N_ready Out alpha_in_N port Avalon-ST ready signal. This signal indicates when
the MegaCore function is ready to receive data. (1)

alpha_in_N_startofpacket In alpha_in_N port Avalon-ST startofpacket signal. This signal marks
the start of an Avalon-ST packet. (1)

alpha_in_N_valid In alpha_in_N port Avalon-ST valid signal. This signal identifies the
cycles when the port should input data. (1)

alpha_out_N_data Out alpha_out_N port Avalon-ST data bus. Pixel data is transferred out of
the MegaCore function over this bus. (1)

alpha_out_N_endofpacket Out alpha_out_N port Avalon-ST endofpacket signal. This signal marks
the end of an Avalon-ST packet. (1)
July 2010 Altera Corporation Video and Image Processing Suite User Guide

6–22 Chapter 6: Signals
Switch
alpha_out_N_ready In alpha_out_N port Avalon-ST ready signal. This signal is asserted by
the downstream device when it is able to receive data. (1)

alpha_out_N_startofpacket Out alpha_out_N port Avalon-ST startofpacket signal. This signal
marks the start of an Avalon-ST packet. (1)

alpha_out_N_valid Out alpha_out_N port Avalon-ST valid signal. This signal is asserted
when the MegaCore function outputs data. (1)

din_N_data In din_N port Avalon-ST data bus. Pixel data is transferred into the
MegaCore function over this bus.

din_N_endofpacket In din_N port Avalon-ST endofpacket signal. This signal marks the end
of an Avalon-ST packet.

din_N_ready Out din_N port Avalon-ST ready signal. This signal indicates when the
MegaCore function is ready to receive data.

din_N_startofpacket In din_N port Avalon-ST startofpacket signal. This signal marks the
start of an Avalon-ST packet.

din_N_valid In din_N port Avalon-ST valid signal. This signal identifies the cycles
when the port should input data.

dout_N_data Out dout_N port Avalon-ST data bus. Pixel data is transferred out of the
MegaCore function over this bus.

dout_N_endofpacket Out dout_N port Avalon-ST endofpacket signal. This signal marks the
end of an Avalon-ST packet.

dout_N_ready In dout_N port Avalon-ST ready signal. This signal is asserted by the
downstream device when it is able to receive data.

dout_N_startofpacket Out dout_N port Avalon-ST startofpacket signal. This signal marks the
start of an Avalon-ST packet.

dout_N_valid Out dout_N port Avalon-ST valid signal. This signal is asserted when the
MegaCore function outputs data.

Note to Table 6–18:

(1) These ports are present only when Alpha Enabled is turned on in the MegaWizard interface.

Table 6–18. Switch Signals (Part 2 of 2)

Signal Direction Description
Video and Image Processing Suite User Guide July 2010 Altera Corporation

July 2010 Altera Corporation
7. Control Register Maps
The Color Space Converter, Gamma Corrector, 2D FIR Filter, Alpha Blending Mixer,
Scaler, Clipper, Deinterlacer, Interlacer, Frame Buffer, Clocked Video Input, Clocked
Video Output, and Test Pattern Generator MegaCore functions support run-time
control for some of their behavior using a common type of Avalon-MM slave
interface. This chapter describes the control register maps which can be accessed
using these interfaces.

For information about the Control and Status registers which are common to these
interfaces, refer to “Avalon-MM Slave Interfaces” on page 4–17.

Color Space Converter
Table 7–1 describes the control register map for the Color Space Converter MegaCore
function.

The width of each register in the Color Space Converter control register map is 32 bits.
The coefficient and summand registers use integer, signed 2’s complement numbers.
To convert from fractional values, simply move the binary point right by the number
of fractional bits specified in the user interface.

The control data is read once at the start of each frame and is buffered inside the
MegaCore function, so the registers can be safely updated during the processing of a
frame.

Table 7–1. Color Space Converter Control Register Map

Address Register Name Description

0 Control
Bit 0 of this register is the Go bit, all other bits are unused. Setting this bit to 0 causes
the Color Space Converter MegaCore function to stop the next time control information
is read. Refer to “Avalon-MM Slave Interfaces” on page 4–17 for full details.

1 Status
Bit 0 of this register is the Status bit, all other bits are unused. Refer to “Avalon-MM
Slave Interfaces” on page 4–17 for full details.

2 Coefficient A0

For details, refer to “Color Space Conversion” on page 5–1.

3 Coefficient B0

4 Coefficient C0

5 Coefficient A1

6 Coefficient B1

7 Coefficient C1

8 Coefficient A2

9 Coefficient B2

10 Coefficient C2

11 Summand S0

12 Summand S1

13 Summand S2
Video and Image Processing Suite User Guide

7–2 Chapter 7: Control Register Maps
Gamma Corrector
Gamma Corrector
The Gamma Corrector can have up to three Avalon-MM slave interfaces. There is a
separate slave interface for each channel in parallel. Table 7–2, Table 7–3 and Table 7–4
on page 7–2 describe the control register maps for these interfaces.

The control registers are read continuously during the operation of the MegaCore
function, so making a change to part of the Gamma look-up table during the
processing of a frame always has immediate effect. To synchronize changes to frame
boundaries, follow the procedure which is described in “Avalon-MM Slave
Interfaces” on page 4–17.

The width of each register in the Gamma Corrector control register map is always
equal to the value of the Bits per pixel per color plane parameter selected in the
MegaWizard interface.

Table 7–2. Gamma Corrector Control Register Map: Interface 0

Address Register Name Description

0 Control

Bit 0 of this register is the Go bit, all other bits are unused. Setting this bit to 0
causes the Gamma Corrector MegaCore function to stop the next time control
information is read. Refer to “Avalon-MM Slave Interfaces” on page 4–17 for full
details.

1 Status
Bit 0 of this register is the Status bit, all other bits are unused. Refer to “Avalon-
MM Slave Interfaces” on page 4–17 for full details.

2 to 2N +1 where N
is the number of
bits per color plane.

Gamma Look-
Up Table

These registers contain a look-up table that is used to apply gamma correction to
video data. An input intensity value of x is gamma corrected by replacing it with the
contents of the (x+1)th entry in the look-up table. Changing the values of these
registers has an immediate effect on the behavior of the MegaCore function. To
ensure that gamma look-up values do not change during processing of a video
frame, use the Go bit to stop the MegaCore function while the table is changed.

Table 7–3. Gamma Corrector Control Register Map: Interface 1

Address Register Name Description

0 Unused This register is not used

1 Unused This register is not used

2 to 2N +1 where N
is the number of
bits per color plane.

Gamma Look-
Up Table

These registers contain a look-up table that is used to apply gamma correction to
video data. An input intensity value of x is gamma corrected by replacing it with the
contents of the (x+1)th entry in the look-up table. Changing the values of these
registers has an immediate effect on the behavior of the MegaCore function. To
ensure that gamma look-up values do not change during processing of a video
frame, use the Go bit in Interface 0 to stop the MegaCore function while the table is
changed.

Table 7–4. Gamma Corrector Control Register Map: Interface 2 (Part 1 of 2)

Address Register Name Description

0 Unused This register is not used
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 7: Control Register Maps 7–3
2D FIR Filter
2D FIR Filter
Table 7–5 describes the control register map for the 2D FIR Filter MegaCore function.

The width of each register in the 2D FIR Filter control register map is 32 bits. The
coefficient registers use integer, signed 2’s complement numbers. To convert from
fractional values, simply move the binary point right by the number of fractional bits
specified in the user interface.

The control data is read once at the start of each frame and is buffered inside the
MegaCore function, so the registers can be safely updated during the processing of a
frame.

Alpha Blending Mixer
Table 7–6 describes the Alpha Blending Mixer MegaCore function control register
map.

1 Unused This register is not used

2 to 2N +1 where N
is the number of
bits per color plane.

Gamma Look-
Up Table

These registers contain a look-up table that is used to apply gamma correction to
video data. An input intensity value of x is gamma corrected by replacing it with the
contents of the (x+1)th entry in the look-up table. Changing the values of these
registers has an immediate effect on the behavior of the MegaCore function. To
ensure that gamma look-up values do not change during processing of a video
frame, use the Go bit in Interface 0 to stop the MegaCore function while the table is
changed.

Table 7–4. Gamma Corrector Control Register Map: Interface 2 (Part 2 of 2)

Address Register Name Description

Table 7–5. 2D FIR Filter Control Register Map

Address Register Name Description

0 Control
Bit 0 of this register is the Go bit, all other bits are unused. Setting this bit to 0 causes
the 2D FIR Filter MegaCore function to stop the next time control information is read.
Refer to “Avalon-MM Slave Interfaces” on page 4–17 for full details.

1 Status
Bit 0 of this register is the Status bit, all other bits are unused. Refer to “Avalon-MM
Slave Interfaces” on page 4–17 for full details.

2 Coefficient 0 The coefficient at the top left (origin) of the filter kernel.

3 Coefficient 1 The coefficient at the origin across to the right by one.

4 Coefficient 2 The coefficient at the origin across to the right by two.

n Coefficient n

The coefficient at position:

■ Row (where 0 is the top row of the kernel) is the integer value via the truncation of
(n–2) / (filter kernel width)

■ Column (where 0 is the far left row of the kernel) is the remainder of
(n–2) / (filter kernel width)
July 2010 Altera Corporation Video and Image Processing Suite User Guide

7–4 Chapter 7: Control Register Maps
Scaler
The width of each register in the Alpha Blending Mixer control register map is 16 bits.
The control data is read once at the start of each frame and is buffered inside the
MegaCore function, so the registers may be safely updated during the processing of a
frame.

Scaler
Table 7–7 describes the Scaler MegaCore function control register map.

The control data is read once at the start of each frame and is buffered inside the
MegaCore function, so the registers may be safely updated during the processing of a
frame. Note that all Scaler registers are write-only except at address 1.

Table 7–6. Alpha Blending Mixer Control Register Map

Address Register(s) Description

0 Control
Bit 0 of this register is the Go bit, all other bits are unused. Setting this bit to 0 causes the Alpha
Blending Mixer MegaCore function to stop the next time control information is read. Refer to
“Avalon-MM Slave Interfaces” on page 4–17 for full details.

1 Status
Bit 0 of this register is the Status bit, all other bits are unused. Refer to “Avalon-MM Slave
Interfaces” on page 4–17 for full details.

2 Layer 1 X Offset in pixels from the left edge of the background layer to the left edge of layer 1. (1)

3 Layer 1 Y Offset in pixels from the top edge of the background layer to the top edge of layer 1. (1)

4 Layer 1
Active

Layer 1 is displayed if this control register is set to 1. Data in the input stream is consumed but
not displayed if this control register is set to 2, Avalon-ST packets of type 2 to 14 are still
propagated as usual. Data from the input stream is not pulled out if this control register is set to
0. (1), (2).

5 Layer 2 X …. (3)

Note to Table 7–6:

(1) The value of this register is checked at the start of each frame. If the register is changed during the processing of a video frame, the change
does not take effect until the start of the next frame.

(2) For efficiency reasons, the Video and Image Processing Suite MegaCore functions buffer a few samples from the input stream even if they are
not immediately processed. This implies that the Avalon-ST inputs for foreground layers assert ready high and buffer a few samples even if the
corresponding layer has been deactivated.

(3) The rows in the table are repeated in ascending order for each layer from 1 to the foreground layer.

Table 7–7. Scaler Control Register Map (Part 1 of 2)

Address Register Description

0 Control
Bit 0 of this register is the Go bit, all other bits are unused. Setting this bit
to 0, causes the Scaler to stop the next time that control information is
read. Refer to “Avalon-MM Slave Interfaces” on page 4–17 for full details.

1 Status

Bit 0 of this register is the Status bit, all other bits are unused. The
Scaler MegaCore function sets this address to 0 between frames. It is set
to 1 while the MegaCore function is processing data and cannot be
stopped. Refer to “Avalon-MM Slave Interfaces” on page 4–17 for full
details.

2 Output Width The width of the output frames in pixels. (1)

3 Output Height The height of the output frames in pixels. (1)

4 Horizontal Coefficient
Bank Write Address

Specifies which memory bank horizontal coefficient writes from the
Avalon-MM interface are made into.
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 7: Control Register Maps 7–5
Scaler
Table 7–8 shows an example of the sequence of writes to the horizontal coefficient
data for an instance of the Scaler MegaCore function with four taps and eight phases.

5 Horizontal Coefficient
Bank Read Address

Specifies which memory bank is used for horizontal coefficient reads
during data processing.

6 Vertical Coefficient Bank
Write Address

Specifies which memory bank vertical coefficient writes from the Avalon-
MM interface are made into. (2)

7 Vertical Coefficient Bank
Read Address

Specifies which memory bank is used for vertical coefficient reads during
data processing

8 to 7+Nh Horizontal Tap Data
Specifies values for the horizontal coefficients at a particular phase. Write
these values first, then the Horizontal Phase to commit the write.

8+Nh Horizontal Phase

Specifies which phase the Horizontal Tap Data applies to. Writing to
this location, commits the writing of tap data. This write must be made
even if the phase value does not change between successive sets of tap
data.

9+Nh to
8+Nh+Nh+N
v

Vertical Tap Data
Specifies values for the vertical coefficients at a particular phase. Write
these values first, then the Vertical Phase to commit the write. (2)

9+Nh+Nv Vertical Phase

Specifies which phase the Vertical Tap Data applies to. Writing to
this location, commits the writing of tap data. This write must be made
even if the phase value does not change between successive sets of tap
data. (2)

Note to Table 7–7:

(1) Value can be from 32 to the maximum specified in the MegaWizard interface.
(2) If Share horizontal/vertical coefficients is selected in the MegaWizard interface, this location is not used.

Table 7–7. Scaler Control Register Map (Part 2 of 2)

Address Register Description

Table 7–8. Example of Using the Scaler Control Registers

Address Value Purpose

8 0 Setting up Tap 0 for Phase 0.

9 128 Setting up Tap 1 for Phase 0.

10 0 Setting up Tap 2 for Phase 0.

11 0 Setting up Tap 3 for Phase 0.

12 0 Commit the writes to Phase 0.

8 –8 Setting up Tap 0 for Phase 1.

9 124 Setting up Tap 1 for Phase 1.

10 13 Setting up Tap 2 for Phase 1.

11 –1 Setting up Tap 3 for Phase 1.

12 1 Commit the writes to Phase 1.

...

8 –1 Setting up Tap 0 for Phase 7.

9 13 Setting up Tap 1 for Phase 7.

10 124 Setting up Tap 2 for Phase 7.

11 –8 Setting up Tap 3 for Phase 7.

12 7 Commit the writes to Phase 7.
July 2010 Altera Corporation Video and Image Processing Suite User Guide

7–6 Chapter 7: Control Register Maps
Clipper
Clipper
Table 7–9 on page 7–6 describes the Clipper MegaCore function control register map.

The control data is read once at the start of each frame and is buffered inside the
MegaCore function, so the registers can be safely updated during the processing of a
frame. Note that all Clipper registers are write-only except at address 1.

Deinterlacer
An run-time control interface can be attached to the Deinterlacer that you can use to
override the default behavior of the motion-adaptive algorithm or to synchronize the
input and output frame rates. However, it is not possible to enable both interfaces
simultaneously.

Table 7–10 describes the control register map that controls the motion-adaptive
algorithm at run time. The control data is read once and registered before outputting a
frame. It can be safely updated during the processing of a frame.

Table 7–9. Clipper Control Register Map

Address Register Description

0 Control
Bit 0 of this register is the Go bit, all other bits are unused. Setting this bit to 0 causes the
Clipper MegaCore function to stop the next time control information is read. Refer to
“Avalon-MM Slave Interfaces” on page 4–17 for full details.

1 Status

Bit 0 of this register is the Status bit, all other bits are unused. The Clipper MegaCore
function sets this address to 0 between frames. It is set to 1 while the MegaCore function
is processing data and cannot be stopped. Refer to “Avalon-MM Slave Interfaces” on
page 4–17 for full details.

2 Left Offset The left offset, in pixels, of the clipping window/rectangle. (1)

3 Right Offset or
Width

In clipping window mode, the right offset of the window. In clipping rectangle mode, the
width of the rectangle. (1)

4 Top Offset The top offset, in pixels, of the clipping window/rectangle. (2)

5 Bottom Offset
or Height

In clipping window mode, the bottom offset of the window. In clipping rectangle mode,
the height of the rectangle. (2)

Notes to Table 7–9:

(1) The left and right offset values must be less than or equal to the input image width.
(2) The top and bottom offset values must be less than or equal to the input image height.

Table 7–10. Deinterlacer Control Register Map for Run-Time Control of the Motion-Adaptive Algorithm (Part 1 of 2)

Address Register Description

0 Control

Bit 0 of this register is the Go bit, all other bits are unused. Setting this bit to 0 causes the
Deinterlacer MegaCore function to stop before control information is read and before
outputting a frame. While stopped, the Deinterlacer may continue to receive and drop
frames at its input if triple-buffering is enabled. Refer to “Avalon-MM Slave Interfaces” on
page 4–17 for full details.

1 Status
Bit 0 of this register is the Status bit, all other bits are unused. Refer to “Avalon-MM
Slave Interfaces” on page 4–17 for full details.
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 7: Control Register Maps 7–7
Interlacer
Table 7–10 describes the control register map that synchronizes the input and output
frame rates. The control data is read and registered when receiving the image data
header that signals new frame. It can be safely updated during the processing of a
frame.

Interlacer
Table 7–12 describes the control register map for the Interlacer. The control interface is
8 bits wide but the Interlacer only uses bit 0 of each addressable register.

2 Motion value
override

Write-only register. Bit 0 of this register should be set to 1 to override the per-pixel
motion value computed by the deinterlacing algorithm with a user specified value. This
register cannot be read.

3 Blending
coefficient

Write-only register. The 16-bit value that overrides the motion value computed by the
deinterlacing algorithm. This value can vary between 0 (weaving) to 65535 (bobbing).
The register cannot be read.

Table 7–10. Deinterlacer Control Register Map for Run-Time Control of the Motion-Adaptive Algorithm (Part 2 of 2)

Address Register Description

Table 7–11. Deinterlacer Control Register Map for Synchronizing the Input and Output Frame Rates

Address Register Description

0 Control

Bit 0 of this register is the Go bit, all other bits are unused. Setting this bit to 0 causes the
Deinterlacer MegaCore function to stop before control information is read and before
receiving and buffering the next frame. While stopped, the Deinterlacer may freeze the
output and repeat a static frame if triple-buffering is enabled. Refer to “Avalon-MM Slave
Interfaces” on page 4–17 for full details.

1 Status
Bit 0 of this register is the Status bit, all other bits are unused. Refer to “Avalon-MM
Slave Interfaces” on page 4–17 for full details.

2 Input frame
rate

Write-only register. An 8-bit integer value for the input frame rate This register cannot be
read. (1)

3 Output frame
rate

Write-only register. An 8-bit integer value for the output frame rate. The register cannot be
read. (1)

Note to Table 7–11:

(1) The behavior of the rate conversion algorithm is not directly affected by a particular choice of input and output rates but only by their ratio.
23.976 -> 29.970 is equivalent to 24 -> 30.

Table 7–12. Deinterlacer Control Register Map for Run-Time Control of the Motion-Adaptive Algorithm

Address Register Description

0 Control
Bit 0 of this register is the Go bit. All other bits are unused. Setting this bit to 1 causes the
Interlacer MegaCore function to pass data through without modification.

1 Status
Bit 0 of this register is the Status bit. All other bits are unused. Refer to “Avalon-MM
Slave Interfaces” on page 4–17 for full details.

2 Progressive
pass-through

Setting bit 0 to 1 disables the Interlacer. When disabled, progressive inputs are
propagated without modification.
July 2010 Altera Corporation Video and Image Processing Suite User Guide

7–8 Chapter 7: Control Register Maps
Frame Reader
Frame Reader
The width of each register of the frame reader is 32 bits. The control data is read once
at the start of each frame. The registers may be safely updated during the processing
of a frame. Table 7–13 describes the Frame Reader runtime control registers.

Frame Buffer
A run-time control can be attached either to the writer component or to the reader
component of the Frame Buffer MegaCore function but not to both. The width of each
register is 16 bits.

Table 7–13. Frame Reader Register Map for Run-Time Control

Address Register Description

0 Control
Bit 0 of this register is the Go bit. Setting this bit to 1 causes the Frame Reader to start
outputting data. Bit 1 of the Control register is the interrupt enable. Setting bit 1 to 1,
enables the end of frame interrupt.

1 Status
Bit 0 of this register is the Status bit. All other bits are unused. Refer to “Avalon-MM
Slave Interfaces” on page 4–17 for full details.

2 Interrupt
Bit 1 of this register is the end of frame interrupt bit. All other bits are unused. Writing a 1
to bit 1 resets the end of frame interrupt.

3 Frame Select
This register selects between frame 0 and frame 1 for next output. Frame 0 is selected by
writing a 0 here, frame is selected by writing a 1 here.

4 Frame 0 Base
Address

The 32-bit base address of the frame.

5 Frame 0 Words The number of words (reads from the master port) to read from memory for the frame.

6
Frame 0 Single
Cycle Color
Patterns

The number of single-cycle color patterns to read for the frame.

7 Frame 0
Reserved

Reserved for future use.

8 Frame 0 Width The Width to be used for the control packet associated with frame 0.

9 Frame 0 Height The Height to be used for the control packet associated with frame 0.

10 Frame 0
Interlaced

The interlace nibble to be used for the control packet associated with frame 0.

11 Frame 1 Base
Address

The 32-bit base address of the frame.

12 Frame 1 Words The number of words (reads from the master port) to read from memory for the frame.

13
Frame 1 Single
Cycle Color
Patterns

The number of single-cycle color patterns to read for the frame.

14 Frame 1
Reserved

Reserved for future use.

15 Frame 1 Width The Width to be used for the control packet associated with the frame.

16 Frame 1 Height The Height to be used for the control packet associated with the frame.

17 Frame 1
Interlaced

The interlace nibble to be used for the control packet associated with the frame.
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 7: Control Register Maps 7–9
Frame Buffer
Table 7–14 describes the Frame Buffer MegaCore function control register map for the
writer component.

Table 7–15 describes the Frame Buffer MegaCore function control register map for the
reader component.

Table 7–14. Frame Buffer Control Register Map for the Writer Component

Address Register(s) Description

0 Control
Bit 0 of this register is the Go bit. Setting this bit to 1 causes the Frame Buffer MegaCore
function to stop the next time control information is read to start outputting data. Refer
to “Avalon-MM Slave Interfaces” on page 4–17 for full details.

1 Status
Bit 0 of this register is the Status bit, all other bits are unused. Refer to “Avalon-MM
Slave Interfaces” on page 4–17 for full details.

2 Frame Counter
Read-only register updated at the end of each frame processed by the writer. The
counter is incremented if the frame is not dropped and passed to the reader component.

3 Drop Counter
Read-only register updated at the end of each frame processed by the writer. The
counter is incremented if the frame is dropped.

4 Controlled Rate
Conversion

Bit 0 of this register determines whether dropping and repeating of frames or fields is
tightly controlled by the specified input and output frame rates. Setting this bit to 0,
switches off the controlled rate conversion and returns the triple-buffering algorithm to
a free regime where dropping and repeating is only determined by the status of the
spare buffer.

5 Input Frame Rate
Write-only register. A 16-bit integer value for the input frame rate. This register cannot
be read.

6 Output Frame Rate
Write-only register. A 16-bit integer value for the output frame rate. This register cannot
be read.

Table 7–15. Frame Buffer Control Register Map for the Reader Component

Address Register(s) Description

0 Control

Bit 0 of this register is the Go bit, all other bits are unused. Setting this bit to 0 causes the
reader component to stop the next time control information is updated. While stopped,
the Frame Buffer may continue to receive and drop frame at its input if frame dropping is
enabled. Refer to “Avalon-MM Slave Interfaces” on page 4–17 for full details.

1 Status
Bit 0 of this register is the Status bit, all other bits are unused. Refer to “Avalon-MM
Slave Interfaces” on page 4–17 for full details.

2 Frame Counter
Read-only register updated at the end of each frame processed by the reader. The counter
is incremented if the frame is not repeated.

3 Repeat Counter
Read-only register updated at the end of each frame processed by the reader. The counter
is incremented if the frame is about to be repeated.
July 2010 Altera Corporation Video and Image Processing Suite User Guide

7–10 Chapter 7: Control Register Maps
Clocked Video Input
Clocked Video Input
Table 7–16 describes the Clocked Video Input MegaCore function control register
map. The width of each register is 16 bits.

Table 7–16. Clocked Video Input Control Register Map (Part 1 of 2)

Address Register Description

0 Control

Bit 0 of this register is the Go bit:

■ Setting this bit to 1 causes the Clocked Video Input MegaCore function to
start data output on the next video frame boundary. Refer to “Control Port”
on page 5–38 for full details.

Bits 3, 2, and 1 of the Control register are the interrupt enables:

■ Setting bit 1 to 1, enables the status update interrupt.

■ Setting bit 2 to 1, enables the stable video interrupt.

■ Setting bit 3 to 1, enables the synchronization outputs (sof, sof_locked,
refclk_div).

1 Status

Bit 0 of this register is the Status bit:

■ Data is being output by the Clocked Video Input MegaCore function when this
bit is asserted. Refer to “Control Port” on page 5–38 for full details.

Bits 2 and 1 of the Status register are not used.

Bits 6, 5, 4, and 3 are the resolution valid bits:

■ When bit 3 is asserted, the SampleCount register is valid.

■ When bit 4 is asserted, the F0LineCount register is valid.

■ When bit 5 is asserted, the SampleCount register is valid.

■ When bit 6 is asserted, the F1LineCount register is valid.

Bit 7 is the interlaced bit:

■ When asserted, the input video stream is interlaced.

Bit 8 is the stable bit:

■ When asserted, the input video stream has had a consistent line length for
two of the last three lines.

Bit 9 is the overflow sticky bit:

■ When asserted, the input FIFO has overflowed. The overflow sticky bit stays
asserted until a write of is performed to this bit.

Bit 10 is the resolution bit:

■ When asserted, indicates a valid resolution in the sample and line count
registers.

2 Interrupt

Bits 2 and 1 are the interrupt status bits:

■ When bit 1 is asserted, the status update interrupt has triggered.

■ When bit 2 is asserted, the stable video interrupt has triggered.

■ The interrupts stay asserted until a write of 1 is performed to these bits.

3 Used Words The used words level of the input FIFO.

4 Active Sample Count The detected sample count of the video streams excluding blanking.

5 F0 Active Line Count The detected line count of the video streams F0 field excluding blanking.

6 F1 Active Line Count The detected line count of the video streams F1 field excluding blanking.
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 7: Control Register Maps 7–11
Clocked Video Output
Clocked Video Output
Table 7–17 describes the Clocked Video Output MegaCore function control register
map. The width of each register is 16 bits.

7 Total Sample Count The detected sample count of the video streams including blanking.

8 F0 Total Line Count The detected line count of the video streams F0 field including blanking.

9 F1 Total Line Count The detected line count of the video streams F1 field including blanking.

10 Standard The contents of the vid_std signal.

11 SOF Sample

Start of frame sample register. The sample and sub-sample upon which the SOF
occurs (and the sof signal triggers):

■ Bits 0–1 are the subsample value.

■ Bits 2–15 are the sample value.

12 SOF Line
Start of frame line register. The line upon which the SOF occurs measured from
the rising edge of the F0 vertical sync.

14 Refclk Divider Number of cycles of vid_clk (refclk) before refclk_div signal triggers.

Table 7–16. Clocked Video Input Control Register Map (Part 2 of 2)

Address Register Description

Table 7–17. Clocked Video Output Control Register Map (Part 1 of 3)

Address Register Description

0 Control

Bit 0 of this register is the Go bit:

■ Setting this bit to 1 causes the Clocked Video Output MegaCore function to
start video data output. Refer to “Control Port” on page 5–46 for full details.

Bits 3, 2, and 1 of the Control register are the interrupt enables:

■ Setting bit 1 to 1, enables the status update interrupt.

■ Setting bit 2 to 1, enables the locked interrupt.

■ Setting bit 3 to 1, enables the synchronization outputs (vid_sof,
vid_sof_locked, vcoclk_div).

■ When bit 3 is set to 1, setting bit 4 to 1, enables frame locking. The Clock
Video Output attempts to align its vid_sof signal to the sof signal from the
Clocked Video Input MegaCore function.

1 Status

Bit 0 of this register is the Status bit:

■ Data is being output by the Clocked Video Output MegaCore function when
this bit is asserted. Refer to “Control Port” on page 5–46 for full details.

Bit 1 of the Status register is unused.

Bit 2 is the underflow sticky bit:

■ When bit 2 is asserted, the output FIFO has underflowed. The underflow
sticky bit stays asserted until a 1 is written to this bit.

Bit 3 is the frame locked bit.

■ When bit 3 is asserted, the Clocked Video Output has aligned its start of
frame to the incoming sof signal.
July 2010 Altera Corporation Video and Image Processing Suite User Guide

7–12 Chapter 7: Control Register Maps
Clocked Video Output
2 Interrupt

Bits 2 and 1 are the interrupt status bits:

■ When bit 1 is asserted, the status update interrupt has triggered.

■ When bit 2 is asserted, the locked interrupt has triggered.

■ The interrupts stay asserted until a write of 1 is performed to these bits.

3 Used Words The used words level of the output FIFO.

4 Video Mode Match One-hot register that indicates the video mode that is selected.

5 ModeX Control

Video Mode 1 Control. Bit 0 of this register is the Interlaced bit:

■ Set to 1 for interlaced. Set to a 0 for progressive.

Bit 1 of this register is the sequential output control bit (only if the Allow output
of color planes in sequence compile-time parameter is enabled).

■ Setting bit 1 to 1, enables sequential output from the Clocked Video Output
e.g. for NTSC. Setting bit 1 to a 0, enables parallel output from the Clocked
Video Output e.g. for 1080p.

6 Mode1 Sample Count Video mode 1 sample count. Specifies the active picture width of the field.

7 Mode1 F0 Line Count
Video mode 1 field 0/progressive line count. Specifies the active picture height
of the field.

8 Mode1 F1 Line Count
Video mode 1 field 1 line count (interlaced video only). Specifies the active
picture height of the field.

9 Mode1 Horizontal Front
Porch

Video mode 1 horizontal front porch. Specifies the length of the horizontal front
porch in samples.

10 Mode1 Horizontal Sync
Length

Video mode 1 horizontal synchronization length. Specifies the length of the
horizontal synchronization length in samples.

11 Mode1 Horizontal
Blanking

Video mode 1 horizontal blanking period. Specifies the length of the horizontal
blanking period in samples.

12 Mode1 Vertical Front
Porch

Video mode 1 vertical front porch. Specifies the length of the vertical front porch
in lines.

13 Mode1 Vertical Sync
Length

Video mode 1 vertical synchronization length. Specifies the length of the vertical
synchronization length in lines.

14 Mode1 Vertical Blanking
Video mode 1 vertical blanking period. Specifies the length of the vertical
blanking period in lines.

15 Mode1 F0 Vertical Front
Porch

Video mode 1 field 0 vertical front porch (interlaced video only). Specifies the
length of the vertical front porch in lines.

16 Mode1 F0 Vertical Sync
Length

Video mode 1 field 0 vertical synchronization length (interlaced video only).
Specifies the length of the vertical synchronization length in lines.

17 Mode1 F0 Vertical
Blanking

Video mode 1 field 0 vertical blanking period (interlaced video only). Specifies
the length of the vertical blanking period in lines.

18 Mode1 Active Picture
Line

Video mode 1 active picture line. Specifies the line number given to the first line
of active picture.

19 Mode1 F0 Vertical
Rising

Video mode 1 field 0 vertical blanking rising edge. Specifies the line number
given to the start of field 0's vertical blanking.

20 Mode1 Field Rising
Video mode 1 field rising edge. Specifies the line number given to the end of
Field 0 and the start of Field 1.

21 Mode1 Field Falling
Video mode 1 field falling edge. Specifies the line number given to the end of
Field 0 and the start of Field 1.

Table 7–17. Clocked Video Output Control Register Map (Part 2 of 3)

Address Register Description
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 7: Control Register Maps 7–13
Test Pattern Generator
Test Pattern Generator
The width of each register in the Test Pattern Generator control register map is 16 bits.
The control data is read once at the start of each frame and is buffered inside the
MegaCore function, so that the registers can be safely updated during the processing
of a frame or pair of interlaced fields.

After control data has been read, the Test Pattern Generator MegaCore function
outputs a control packet that describes the following image data packet. When the
output is interlaced, the control data is processed only before the first field of a frame,
although a control packet is sent before each field.

Table 7–18 describes the Test Pattern Generator MegaCore function control register
map.

22 Mode1 Standard The value output on the vid_std signal.

23 Mode1 SOF Sample

Start of frame sample register. The sample and subsample upon which the SOF
occurs (and the vid_sof signal triggers):

■ Bits 0–1 are the subsample value.

■ Bits 2–15 are the sample value.

24 Mode1 SOF Line
SOF line register. The line upon which the SOF occurs measured from the rising
edge of the F0 vertical sync.

25 Mode1 Vcoclk Divider Number of cycles of vid_clk (vcoclk) before vcoclk_div signal triggers.

26 Mode1 Ancillary Line The line to start inserting ancillary data packets.

27 Mode1 F0 Ancillary Line The line in field F0 to start inserting ancillary data packets.

28 Mode1 Valid
Video mode 1 valid. Set to indicate that this mode is valid and can be used for
video output.

29 Mode2 Control ...

30 ... (1) ...

Note to Table 7–17:

(1) The rows in the table are repeated in ascending order for each video mode. All of the ModeN registers are write only.

Table 7–17. Clocked Video Output Control Register Map (Part 3 of 3)

Address Register Description

Table 7–18. Test Pattern Generator Control Register Map (Part 1 of 2)

Address Register(s) Description

0 Control

Bit 0 of this register is the Go bit, all other bits are unused. Setting this bit to 0 causes the
Test Pattern Generator MegaCore function to stop before control information is read.

Refer to “Generation of Avalon-ST Video Control Packets and Run-Time Control” on
page 5–59 for full details.

1 Status

Bit 0 of this register is the Status bit, all other bits are unused. The Test Pattern
Generator MegaCore function sets this address to 0 between frames. It is set to 1 while
the MegaCore function is producing data and cannot be stopped.

Refer to “Generation of Avalon-ST Video Control Packets and Run-Time Control” on
page 5–59 for full details.

2 Output Width The width of the output frames or fields in pixels. (1)

3 Output Height The progressive height of the output frames or fields in pixels. (1)
July 2010 Altera Corporation Video and Image Processing Suite User Guide

7–14 Chapter 7: Control Register Maps
Control Synchronizer
Control Synchronizer
The width of each register of the frame reader is 32 bits. The control data is read once
at the start of each frame. The registers may be safely updated during the processing
of a frame. Table 7–19 describes the Control Synchronizer MegaCore function control
register map.

4 R/Y
The value of the R (or Y) color sample when the test pattern is a uniform color
background. (2)

5 G/Cb
The value of the G (or Cb) color sample when the test pattern is a uniform color
background. (2)

6 B/Cr
The value of the B (or Cr) color sample when the test pattern is a uniform color
background. (2)

Note to Table 7–18:

(1) Value can be from 32 to the maximum specified in the MegaWizard interface.
(2) These control registers are only available when the test pattern generator MegaCore function is configured to output a uniform color

background and when the run-time control interface has been enabled.

Table 7–18. Test Pattern Generator Control Register Map (Part 2 of 2)

Address Register(s) Description

Table 7–19. Control Synchronizer Control Register Map (Part 1 of 2)

Address Register(s) Description

0 Control
Bit 0 of this register is the Go bit. Setting this bit to 1 causes the Control Synchronizer
MegaCore function to start passing through data. Bit 1 of the Control register is the
interrupt enable. Setting bit 1 to 1, enables the completion of writes interrupt.

1 Status
Bit 0 of this register is the Status bit. All other bits are unused. Refer to “Avalon-MM
Slave Interfaces” on page 4–17 for full details.

2 Interrupt
Bit 1 of this register is the completion of writes interrupt bit, all other bits are unused.
Writing a 1 to bit 1 resets the completion of writes interrupt.

3 Disable Trigger

Setting this register to 1 disables the trigger condition of the control synchronizer. Setting
this register to 0 enables the trigger condition of the control synchronizer. When the
compile time option Require trigger reset via control port is enabled this register value is
automatically set to 1 every time the Control Synchronizer triggers.

4 Number of writes
This register sets how many write operations, starting with address and word 0, are
written when the control synchronizer triggers.

5 Address 0 Address where word 0 should be written on trigger condition.

6 Word 0 The word to write to address 0 on trigger condition.

7 Address 1 Address where word 1 should be written on trigger condition.

8 Word 1 The word to write to address 1 on trigger condition.

9 Address 2 Address where word 2 should be written on trigger condition.

10 Word 2 The word to write to address 2 on trigger condition.

11 Address 3 Address where word 3 should be written on trigger condition.

12 Word 3 The word to write to address 3 on trigger condition.

13 Address 4e Address where word 4 should be written on trigger condition.

14 Word 4 The word to write to address 4 on trigger condition.

15 Address 5 Address where word 5 should be written on trigger condition.
Video and Image Processing Suite User Guide July 2010 Altera Corporation

Chapter 7: Control Register Maps 7–15
Switch
Switch
Table 7–20 describes the Switch MegaCore function control register map.

■

16 Word 5 The word to write to address 5 on trigger condition.

17 Address 6 Address where word 6 should be written on trigger condition.

18 Word 6 The word to write to address 6 on trigger condition.

19 Address 7 Address where word 7 should be written on trigger condition.

20 Word 7 The word to write to address 7 on trigger condition.

21 Address 8 Address where word 8 should be written on trigger condition.

22 Word 8 The word to write to address 8 on trigger condition.

23 Address 9 Address where word 9 should be written on trigger condition.

24 Word 9 The word to write to address 9 on trigger condition.

Table 7–19. Control Synchronizer Control Register Map (Part 2 of 2)

Address Register(s) Description

Table 7–20. Switch Control Register Map

Address Register(s) Description

0 Control
Writing a 1 to bit 0, starts the MegaCore function, writing a 0 to bit 0 stops the
MegaCore function.

1 Status
Reading a 0 from bit 0, indicates that the MegaCore function is running (video
is flowing through it), reading a 1 indicates that it is stopped.

2 Output Switch
Writing a 1 to bit 0, indicates that the video output streams should be
synchronized and then the new values in the output control registers should
be loaded.

3 Dout0 Output Control

A one-hot value that selects which video input stream should propagate to this
output. For example, for a 3 input switch:

■ 3'b000 = no output

■ 3'b001 = din_0

■ 3'b010 = din_1

■ 3'b100 = din_2

4 Dout1 Output Control As Dout0 Output Control but for output dout1.

...

15 Dout12 Output Control As Dout0 Output Control but for output dout12.
July 2010 Altera Corporation Video and Image Processing Suite User Guide

7–16 Chapter 7: Control Register Maps
Switch
Video and Image Processing Suite User Guide July 2010 Altera Corporation

July 2010 Altera Corporation
Additional Information
This chapter provides additional information about the document and Altera.

Document Revision History
The following table shows the revision history for this document.

How to Contact Altera
To locate the most up-to-date information about Altera products, refer to the
following table.

Date Version Changes

July 2010 10.0

■ Added Stratix V device support.

■ Added Interlacer MegaCore function.

■ Updated Clocked Video Output and Clocked Video Input MegaCore functions to insert and
extract ancillary packets.

November 2009 9.1

■ Added new Frame Reader, Control Synchronizer, and Switch MegaCore functions.

■ The Frame Buffer MegaCore function supports controlled frame dropping or repeating to
keep the input and output frame rates locked together. The Frame Buffer also supports
buffering of interlaced video streams.

■ The Clipper, Frame Buffer, and Color Plane Sequencer MegaCore functions now support
four channels in parallel.

■ The Deinterlacer MegaCore function supports a new 4:2:2 motion-adaptive mode and an
option to align read/write bursts on burst boundaries.

■ The Line Buffer Compiler MegaCore function has been obsoleted.

■ The Interfaces chapter has been re-written.

March 2009 8.0

■ The Deinterlacer MegaCore function supports controlled frame dropping or repeating to
keep the input and output frame rates locked together

■ The Test Pattern Generator MegaCore function can generate a user-specified constant
color that can be used as a uniform background

■ Preliminary support for Arria® II GX devices

Contact (Note 1) Contact Method Address

Technical support Website www.altera.com/support

Technical training
Website www.altera.com/training

Email custrain@altera.com

Product literature Website www.altera.com/literature

Non-technical support (General) Email nacomp@altera.com

(Software Licensing) Email authorization@altera.com

Note to Table:

(1) You can also contact your local Altera sales office or sales representative.
Video and Image Processing Suite User Guide

http://www.altera.com/support
http://www.altera.com/training
mailto:custrain@altera.com
http://www.altera.com/literature/
mailto:nacomp@altera.com
mailto:authorization@altera.com

Info–2 Additional Information
Typographic Conventions
Typographic Conventions
The following table shows the typographic conventions this document uses.

Referenced Documents
Altera application notes, white papers, and user guides, available at the Altera web
site (www.altera.com), provide more detail of how to effectively design with
MegaCore functions and the Quartus II software.

Refer also to the following references:

Visual Cue Meaning

Bold Type with Initial Capital
Letters

Indicate command names, dialog box titles, dialog box options, and other GUI
labels. For example, Save As dialog box. For GUI elements, capitalization matches
the GUI.

bold type
Indicates directory names, project names, disk drive names, file names, file name
extensions, software utility names, and GUI labels. For example, \qdesigns
directory, d: drive, and chiptrip.gdf file.

Italic Type with Initial Capital Letters Indicate document titles. For example, AN 519: Stratix IV Design Guidelines.

italic type
Indicates variables. For example, n + 1.

Variable names are enclosed in angle brackets (< >). For example, <file name> and
<project name>.pof file.

Initial Capital Letters Indicate keyboard keys and menu names. For example, the Delete key and the
Options menu.

“Subheading Title” Quotation marks indicate references to sections within a document and titles of
Quartus II Help topics. For example, “Typographic Conventions.”

Courier type

Indicates signal, port, register, bit, block, and primitive names. For example, data1,
tdi, and input. The suffix n denotes an active-low signal. For example, resetn.

Indicates command line commands and anything that must be typed exactly as it
appears. For example, c:\qdesigns\tutorial\chiptrip.gdf.

Also indicates sections of an actual file, such as a Report File, references to parts of
files (for example, the AHDL keyword SUBDESIGN), and logic function names (for
example, TRI).

r An angled arrow instructs you to press the Enter key.

1., 2., 3., and
a., b., c., and so on

Numbered steps indicate a list of items when the sequence of the items is important,
such as the steps listed in a procedure.

■ ■ ■ Bullets indicate a list of items when the sequence of the items is not important.

1 The hand points to information that requires special attention.

h A question mark directs you to a software help system with related information.

f The feet direct you to another document or website with related information.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or your work.

w A warning calls attention to a condition or possible situation that can cause you
injury.

The envelope links to the Email Subscription Management Center page of the Altera
website, where you can sign up to receive update notifications for Altera documents.
Video and Image Processing Suite User Guide July 2010 Altera Corporation

https://www.altera.com/subscriptions/email/signup/eml-index.jsp
http://www.altera.com

Additional Information Info–3
Referenced Documents
■ International Telecommunications Union, Geneva. Recommendation ITU-R BT.601,
Encoding Parameters of Digital Television for Studios, 1992.

■ Ken Turkowski. Graphics gems, chapter Filters for common resampling tasks, pages
147–165. Academic Press Professional, Inc., San Diego, CA, USA, 1990.

■ E Catmull and R Rom. A class of local interpolating splines. Computer Aided Geometric
Design, pages 317–326, 1974.

■ MegaCore IP Library Release Notes and Errata.

■ AN 320: OpenCore Plus Evaluation of Megafunctions.

■ AN427: Video and Image Processing Up Conversion Example Design.

■ Quartus II Installation & Licensing for Windows and Linux Workstations.

■ Simulating Altera IP in Third-Party Simulation Tools chapter in volume 3 of the
Quartus II Handbook.

■ Volume 4: SOPC Builder of the Quartus II Handbook.

■ Avalon Interface Specifications.
July 2010 Altera Corporation Video and Image Processing Suite User Guide

http://www.altera.com/literature/rn/rn_ip.pdf
http://www.altera.com/literature/an/an320.pdf
http://www.altera.com/literature/an/an427.pdf
http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/hb/qts/qts_qii53014.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v4.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Info–4 Additional Information
Referenced Documents
Video and Image Processing Suite User Guide July 2010 Altera Corporation

	Video and Image Processing Suite User Guide
	Contents
	1. About This MegaCore Function Suite
	New Features
	Release Information
	Device Family Support
	Features
	General Description
	Color Space Converter (CSC)
	Chroma Resampler
	Gamma Corrector
	2D FIR Filter
	2D Median Filter
	Alpha Blending Mixer
	Scaler
	Clipper
	Deinterlacer
	Interlacer
	Frame Reader
	Frame Buffer
	Clocked Video Input
	Clocked Video Output
	Color Plane Sequencer
	Test Pattern Generator
	Control Synchronizer
	Switch
	Design Example

	MegaCore Verification
	Performance and Resource Utilization
	Color Space Converter
	Chroma Resampler
	Gamma Corrector
	2D FIR Filter
	2D Median Filter
	Alpha Blending Mixer
	Scaler
	Clipper
	Deinterlacer
	Interlacer
	Frame Buffer
	Clocked Video Input
	Clocked Video Output
	Color Plane Sequencer
	Test Pattern Generator
	Switch

	2. Getting Started with Altera IP Cores
	Installation and Licensing
	Evaluating an IP Core
	OpenCore Plus Time-Out Behavior

	Design Flows
	SOPC Builder Design Flow
	Specify Parameters
	Complete the SOPC Builder System
	Simulate the System

	MegaWizard Plug-In Manager Design Flow
	Specify Parameters
	Simulate the Design
	Compile and Program

	Generated Files

	3. Parameter Settings
	Color Space Converter (CSC)
	Chroma Resampler
	Gamma Corrector
	2D FIR Filter
	2D Median Filter
	Alpha Blending Mixer
	Scaler
	Clipper
	Deinterlacer
	Interlacer
	Frame Reader
	Frame Buffer
	Clocked Video Input
	Clocked Video Output
	Color Plane Sequencer
	Test Pattern Generator
	Control Synchronizer
	Switch

	4. Interfaces
	Interface Types
	Avalon-ST Video Protocol
	Packets
	Video Data Packets
	Static Parameters of Video Data Packets
	Bits Per Pixel Per Color Plane
	Color Pattern
	Specifying Color Pattern Options
	Structure of Video Data Packets

	Control Data Packets
	Use of Control Data Packets
	Structure of a Control Data Packet

	Ancillary Data Packets
	User-Defined and Altera-Reserved Packets
	Packet Propagation
	Transmission of Avalon-ST Video Over Avalon-ST Interfaces
	Packet Transfer Examples
	Example 1 (Data Transferred in Parallel)
	Example 2 (Data Transferred in Sequence)
	Example 3 (Control Data Transfer)

	Avalon-MM Slave Interfaces
	Specification of the Type of Avalon-MM Slave Interfaces

	Avalon-MM Master Interfaces
	Specification of the Type of Avalon-MM Master Interfaces

	Buffering of Non-Image Data Packets in Memory

	5. Functional Descriptions
	Color Space Converter
	Input and Output Data Types
	Color Space Conversion
	Constant Precision
	Calculation Precision
	Result of Output Data Type Conversion

	Chroma Resampler
	Horizontal Resampling (4:2:2)
	4:4:4 to 4:2:2
	4:2:2 to 4:4:4

	Vertical Resampling (4:2:0)

	Gamma Corrector
	2D FIR Filter
	Calculation Precision
	Coefficient Precision
	Result to Output Data Type Conversion

	2D Median Filter
	Alpha Blending Mixer
	Alpha Blending

	Scaler
	Nearest Neighbor Algorithm
	Bilinear Algorithm
	Resource Usage
	Algorithmic Description

	Polyphase and Bicubic Algorithms
	Resource Usage
	Algorithmic Description
	Choosing and Loading Coefficients
	Recommended Parameters

	Clipper
	Deinterlacer
	Deinterlacing Methods
	Bob with Scanline Duplication
	Bob with Scanline Interpolation
	Weave
	Motion-Adaptive
	Pass-Through Mode for Progressive Frames

	Frame Buffering
	Frame Rate Conversion
	Behavior When Unexpected Fields are Received
	Handling of Avalon-ST Video Control Packets

	Interlacer
	Frame Reader
	Frame Buffer
	Locked Frame Rate Conversion
	Interlaced Video Streams
	Handling of Avalon-ST Video Control Packets

	Clocked Video Input
	Video Formats
	Embedded Synchronization Format
	Separate Synchronization Format
	Video Locked Signal

	Control Port
	Format Detection
	Interrupts

	Generator Lock
	Overflow
	Timing Constraints
	Active Format Description Extractor

	Clocked Video Output
	Video Formats
	Embedded Synchronization Format
	Separate Synchronization Format

	Control Port
	Video Modes
	Interrupts

	Generator Lock
	Underflow
	Timing Constraints
	Active Format Description Inserter

	Color Plane Sequencer
	Rearranging Color Patterns
	Combining Color Patterns
	Splitting/Duplicating
	Subsampled Data
	Avalon-ST Video Stream Requirements

	Test Pattern Generator
	Test Pattern
	Generation of Avalon-ST Video Control Packets and Run-Time Control
	Output Data Types

	Control Synchronizer
	Using the Control Synchronizer

	Switch
	Mixer Layer Switching

	Stall Behavior and Error Recovery
	Color Space Converter
	Error Recovery

	Chroma Resampler
	Error Recovery

	Gamma Corrector
	Error Recovery

	2D FIR Filter
	Error Recovery

	2D Median Filter
	Error Recovery

	Alpha Blending Mixer
	Error Recovery

	Scaler
	Error Recovery

	Clipper
	Error Recovery

	Deinterlacer
	Error Recovery

	Interlacer
	Error Recovery

	Frame Reader
	Frame Buffer
	Error Recovery

	Color Plane Sequencer
	Error Recovery

	Test Pattern Generator
	Control Synchronizer
	Error Recovery

	Clocked Video Input
	Error Recovery

	Clocked Video Output
	Error Recovery

	Switch

	Latency

	6. Signals
	Color Space Converter
	Chroma Resampler
	Gamma Corrector
	2D FIR Filter
	2D Median Filter
	Alpha Blending Mixer
	Scaler
	Clipper
	Deinterlacer
	Interlacer
	Frame Reader
	Frame Buffer
	Clocked Video Input
	Clocked Video Output
	Color Plane Sequencer
	Test Pattern Generator
	Control Synchronizer
	Switch

	7. Control Register Maps
	Color Space Converter
	Gamma Corrector
	2D FIR Filter
	Alpha Blending Mixer
	Scaler
	Clipper
	Deinterlacer
	Interlacer
	Frame Reader
	Frame Buffer
	Clocked Video Input
	Clocked Video Output
	Test Pattern Generator
	Control Synchronizer
	Switch

	Additional Information
	Document Revision History
	How to Contact Altera
	Typographic Conventions
	Referenced Documents

