
Product Comparison
ARM CPU Products

Issue:1.0 09/02/0 0

Page: 1 of 8

Performance of the ARM9TDMI™ and ARM9E-S™ cores compared to the
ARM7TDMI™ core

Copyright 2000 ARM Ltd.

1. Introduction

By using more transistors to implement a more sophisticated design, the ARM9TDMI
and ARM9E-S cores provide over twice the performance than the ARM7TDMI and
ARM7TDMI-S cores, when compared on the same silicon process. The performance
improvements come from a combination of increased clock frequency and decreased
number of clock cycles to execute some frequently occurring instructions1.

For brevity this document will use the term “the seven cores” to refer to the ARM7TDMI
and ARM7TDMI-S cores collectively, and the term “the nine cores” to refer to the
ARM9TDMI and ARM9E-S collectively.

2. Clock Frequency Improvement

The increased clock frequency of the nine cores comes from a 5-stage pipeline design,
compared to a 3-stage pipeline design in the seven cores (see figures 1 to 3).
Increasing the number of pipeline stages increases the amount of parallelism in the
design, and reduces the amount of logic which must be evaluated within a single clock
period. With a five stage pipeline design, the processing of each instruction is spread
across 5 (or more) clock cycles and up to 5 instructions are being worked on during any
one clock cycle. The maximum clock frequency of the ARM9TDMI core is generally in
the range 1.8 to 2.2 times the clock frequency of the ARM7TDMI core when compared
on the same silicon process. The range is due to differences in silicon processes.

3. Cycle Count Improvement

Cycle count improvements give increased performance, independent of clock
frequency. The amount of improvement depends on the mix of instructions in the code
being executed, which is affected by the nature of the program, and for high level
languages, by the compiler used. Programs studied by ARM typically show a
performance improvement of around 30%, although this can vary significantly.

3.1 Loads and stores

The most significant improvement in instruction cycle count moving from the seven
cores to the nine cores is the performance of load and store instructions. Reducing the
number of cycles for loads and stores gives a significant improvement in program
execution time as typically around 30% of instructions are loads or stores. The
reduction is cycles for loads and stores is achieved by the two fundamental micro-
architectural differences between the designs:

- The nine cores have separate instruction and data memory interfaces, allowing the
CPU to simultaneously fetch and instruction and read or write a data item. This is
called a modified-Harvard architecture. The seven cores have a single memory

1 The ARM9E-S core reduces the number of cycles even further by introducing new
instructions designed to allow efficient coding of DSP algorithms which use 16-bit fixed
point data, and those which use saturating arithmetic. This document concentrates on
common features of the ARM9TDMI and ARM9E-S cores, and does not describe the
new DSP instructions which are described elsewhere.

Product Comparison
ARM CPU Products

Issue:1.0 09/02/0 0

Page: 2 of 8

Copyright 2000 ARM Ltd.

interface which is used for both instruction fetches and data accesses.

- The five-stage pipeline introduces separate “Memory” and “Write Back” stages.
These are used to access memory for loads or stores, and to write results back to
the register file.

Together, these allows load and store instructions to complete in a single cycle, as is
explained below the pipeline diagrams (figures 1 to 3).

Table 1 summarises the cycles taken to execute various load and store instructions.
The table shows that all store instructions take one cycle less on the nine cores than on
the seven cores. It also shows that load instructions generally take two less cycles on
the nine cores, if there are no interlocks.

Table 1 Load and Store Cycle Counts (simple cases)

Instruction 2

type
ARM7TDMI and ARM7TDMI-S ARM9TDMI and ARM9E-S

Execute Cycles Interlock cycles Execute Cycles Interlock cycles
LDR
load one word

3 0 1 0 or 1

LDRH
(one halfword)
LDRB
(one byte)
LDRSB
(one signed
byte)
LDRSH
(one signed
halfword)

3 0 1 0 to 2
An extra

interlock cycle
can occur

because these
instructions

must rotate the
data to the

correct position
after it is
loaded.

LDM of n
registers
(load multiple
words)

n+2 0 n
if loading > 1

register.

0 or 1

STR
(store one
word)

2 0 1 0

STRH
(store one
halfword)
STRB
(store one
byte)

2 0 1 0

STM
(store multiple
words)

n+1 0 n 0

2 For simplicity we ignore loads into the program counter, accesses which abort, etc., and we
assume zero wait state memory, or equivalently, the cycle counts for a cache hit. For cycle
counts for the more complex scenarios, see the technical reference manual for the ARM
processor in question.

Product Comparison
ARM CPU Products

Issue:1.0 09/02/0 0

Page: 3 of 8

Copyright 2000 ARM Ltd.

3.2 Interlocks

Pipeline interlocks occur when the data required for an instruction is not available due
to the incomplete execution of an earlier instruction. When an interlock occurs, the
hardware stalls the execution of an instruction until the data is ready. This provides
complete binary compatibility with earlier ARM processor designs, however it increases
the execution time of the code sequence by a number of interlock cycles. Compilers
and assembler-code programmers can in many cases reduce the number of interlock
cycles by re-arranging the order of instructions and other techniques. For example,
consider the code sequences A, B, and C

A:
LDR R0, [R1] ; load R0 from the address contained in R1
ADD R2, R3, R4 ; add R3 and R4 and put the result in R2
SUB R5, R6, R7 ; R5 = R6 – R7

B:
LDR R0, [R1] ; load R0 from the address contained in R1
ADD R2, R3, R0 ; add R3 and R0 and put the result in R2
SUB R5, R6, R7 ; R5 = R6 – R7

C:
LDR R0, [R1] ; load R0 from the address contained in R1
SUB R5, R6, R7 ; R5 = R6 – R7
ADD R2, R3, R0 ; add R3 and R0 and put the result in R2

In code sequence A the three instructions all use different registers. There are not data
dependencies between them, and they all execute in a single cycle with no interlocks,
giving a execution time for the sequence of 3 cycles. The LDR instruction spends one
cycle in the execute stage of the pipeline. In the second cycle, the LDR instruction
moves to the Memory stage of the pipeline to load the data from the memory system
(which in most systems is a data cache). Also in the second cycle, the ADD instruction
moves into the execute stage. In the third cycle the SUB instruction enters the execute
stage. The code sequence takes three cycles to execute.

In code sequence B the ADD instruction uses R0 which is the register being loaded by
the LDR instruction. This introduces a dependency between the two instructions – the
ADD instruction cannot execute until the data has returned from the load. During cycle
1, the LDR instruction is in the execute stage, where it calculates the address to load
the data from. In cycle two the LDR instruction moves to at the end of cycle 2, where it
reads the data from the memory system. The data is returned at the end of cycle 2.
Since the ADD instruction cannot execute until the data is returned, it cannot execute in
cycle 2, so it is stalled for one interlock cycle. The ADD instruction enters the execute
stage in cycle 3, and the SUB instruction enters the execute stage in cycle 4. The code
sequence takes four cycles to execute.

Code sequence C shows how instructions can be re-arranged to avoid interlock cycles.
In this case there is a useful instruction which can be moved between the LDR and the
ADD instructions without modifying the resulting program behaviour. This means that
the LDR can execute in cycle 1, the SUB in cycle 2, and the ADD in cycle 3, executing
the complete sequence in 3 cycles.

Product Comparison
ARM CPU Products

Issue:1.0 09/02/0 0

Page: 4 of 8

Copyright 2000 ARM Ltd.

ARM’s compilers implement code scheduling optimisations to reduce the number of
interlock cycles. It is often possible to find a useful instruction to move between the load
and the subsequent use, but not always. This means that the average number of cycles
to execute a LDR is a number between 1 and 2. The exact number depends on the
code being compiled, and the sophistication of the compiler. Some examples are
presented at the end of this document.

3.3 Branches

Many people ask whether the number of cycles for a branch instruction executed on the
nine cores is larger than the number of cycles on the seven cores. The answer is no,
they take the same number of cycles. This is because the pipelines have the same
number of stages up to the end of the execute stages, and branches are implemented
in the same way on all of the cores discussed in this document. The cycle counts are:

ARM7TDMI and
ARM7TDMI-S

ARM9TDMI and
ARM9E-S

Branch Taken
(passes its condition code check)

3 3

Branch Taken
(fails its condition code check)

1 1

The ARM9TDMI and ARM9E-S cores do not implement branch prediction, because
branches on these CPUs are fairly inexpensive in terms of lost opportunity to execute
other instructions. This means that the cost of logic to implement branch prediction, and
the resulting die size increase, is not justified by the performance improvement that
would be gained.

4. Pipeline designs

This section explains how loads and stores are implemented on the pipelines of the
ARM7TDMI, ARM7TDMI-S, ARM9TDMI, and ARM9TDMI-S cores.

4.1 ARM7TDMI and ARM7TDMI-S

The ARM7TDMI and ARM7TDMI-S CPU cores implement the 3-stage pipeline design
show in figure 1 below. In a single cycle, the Execute stage can read operands from the
register bank, pass them through the Shift Register, pass them though the Arithmetic
and Logic unit (ALU) and write the results back to the Register bank.

Doing all of these operations in a single clock cycle simplifies the design, leading to the
low power, transistor count, and die size of the ARM7TDMI and ARM7TDMI-S CPU
cores. It also limits the maximum clock frequency of the design.

Data reads from the memory system and writes to the memory system are also
performed in the execute stage. To do this the instruction stays in the execute stage of
the pipeline for multiple cycles as follows.

LDR execute stage cycle 1 Calculate the load address +
 fetch an instruction to be executed later.

Execute stage cycle 2 Read the data from the memory system
Execute stage cycle 3 Rotate the data if necessary, and write to register

Product Comparison
ARM CPU Products

Issue:1.0 09/02/0 0

Page: 5 of 8

Copyright 2000 ARM Ltd.

LDM is like LDR but with cycle 3 repeated for each additional register loaded.

STR execute stage cycle 1 Calculate the store address +
fetch an instruction to be executed later.

Execute stage cycle 2 Write the data to the memory system

STM is like STR but with cycle 2 repeated for each additional register stored.

4.2 ARM9TDMI and ARM9E-S

The ARM9TDMI and ARM9E-S CPU cores implement the 5-stage pipeline designs
show in figures 2 and 3 below. The pipeline designs are the same, except that the
ARM9E-S core implements a more sophisticated pipelined multiplier-accumulate unit to
execute the new DSP enhancements present in the ARMv5TE instruction set. They
also have a Harvard architecture, so that data accesses do not have to compete with
instruction fetches for the use of one bus. “Result forwarding” is also implemented, so
that results from the ALU and data loaded from memory to be fed back immediately to
be used by the following instructions – this avoids having to wait for results to be written
back to register bank and read from the register bank.

In these pipeline designs, dedicated pipeline stages have been added for Memory
access and for writing results back to the register bank. Also, register read has been
moved back into the decode stage. These changes allow higher clock frequencies by
reducing the maximum amount of logic which must operate in a single clock cycle.

LDR the clock frequency pipeline In a single cycle, the Execute stage can read
operands from the register bank, pass them through the Shift Register, pass them
though the Arithmetic and Logic unit (ALU) and write the results back to the Register
bank.

Doing all of these operations in a single clock cycle simplifies the design, leading to the
low power, transistor count, and die size of the ARM7TDMI and ARM7TDMI-S CPU
cores. It also limits the maximum clock frequency of the design.

Loads from the memory system and stores to the memory system are also performed in
the execute stage. To do this the instruction stays in the execute stage of the pipeline
for multiple cycles as follows.

LDR execute stage cycle 1 Calculate the load address
memory stage cycle 2 Read the data from the memory system
writeback stage cycle 3 Rotate the data if necessary, and write to register

LDR uses the execute stage for only one cycle, allowing other instructions to use the
execute stage in the following cycles (unless there are interlocks, which are explained
above). This means LDR is a single cycle instruction.

STR execute stage cycle 1 Calculate the store address
memory stage cycle 2 write the data to the memory system

Again, as STR only uses the execute stage for a single cycle it is a single cycle
instruction.

Product Comparison
ARM CPU Products

Issue:1.0 09/02/0 0

Page: 6 of 8

Copyright 2000 ARM Ltd.

Instruction
Fetch Reg Select

Reg
Read Shift ALU

Reg
Write

FETCH DECODE EXECUTE

Thumb → ARM
decompress

ARM decode

Instruction
Fetch Shift + ALU Memory Access Reg

Write

FETCH DECODE EXECUTE MEMORY WRITE

Reg
Decode

ARM or Thumb
Inst Decode

Reg
Read

Instruction
Fetch

Shift + ALU Memory Access

Reg
Write

FETCH DECODE EXECUTE MEMORY WRITE

ARM or Thumb
Inst Decode

MAC1 MAC2 + SAT

Reg
Decode

ARM or Thumb
Inst Decode

Reg
Read

Figure 1 : The ARM7TDMI core and ARM7TDMI-S core pipeline

Figure 2 : The ARM9TDMI core pipeline

Figure 3 : The ARM9E-S core pipline

Product Comparison
ARM CPU Products

Issue:1.0 09/02/0 0

Page: 7 of 8

Copyright 2000 ARM Ltd.

5. Performance Improvement Examples

The performance improvement moving from the seven cores to the nine cores
depends on the way the software uses the ARM instruction set. Code with a large
percentage of loads and stores will see a much larger improvement than code with a
small percentage of loads and stores. Analysis of two pieces of code are given below
as examples.

A spreadsheet showing the data and calculations to achieve these results is show on
the next page.

5.1 EPOC version 4 boot sequence

Trace analysis of booting version 4 of Symbian’s EPOC operating system shows that
ARM9TDMI takes only 79% as many clock cycles as ARM7TDMI to execute the code
sequence. This is equivalent to a 27% performance increase, assuming that both cores
were running at the same clock frequency.

This version of EPOC was compiled with the gnu C++ compiler for a machine with an
ARM7 processor core, and does not have optimizations to avoid interlocks.

5.2 The Dhrystone 2.1 Benchmark

The Dhrystone 2.1 benchmark is a synthetic benchmark program written in C. The
version used has ANSI C function declarations and was compiled with ARM’s ADS 1.0
C compiler, which performs code scheduling optimizations. Analysis of a trace of
executed instructions shows that ARM9TDMI gives a 27% performance increase over
ARM7TDMI at the same clock frequency. The spreadsheet shown on the next page
shows that the contributions of different instructions to this performance improvement
are quite different to the previous example.

Product Comparison
ARM CPU Products

Issue:1.0 09/02/0 0

Page: 8 of 8

Copyright 2000 ARM Ltd.

CPI Comparison of ARM7TDMI and ARM9TDMI

EPOC Version 4 boot sequence
EPOC is compiled with the GNU compiler.

Information from trace analysis on ARM9TDMI
% of average ARM7TDMI ARM9TDMI

instructions length cycles cycles
Single Loads 24.7% 3 1.66 average including interlocks
Single Stores 3.5% 2 1

LDM 3.8% 3.1 x + 2 x
STM 3.7% y + 1 y

Overall ARM9TDMI CPI 1.76

So on average 100 instructions on ARM9TDMI take 1.76 * 100 = 176 cycles
For single loads we saved 1.34 cycles x 24.7 instructions = 33.1 cycles
For single stores we saved 1 cycle x 3.5 instructions = 3.5 cycles
For LDMs we saved 2 cycles x 3.8 instructions = 7.6 cycles
For STMs we saved 1 cycle x 3.7 instructions = 3.7 cycles

So result is 223.9 cycles in ARM7TDMI
Which is a CPI of 2.239

So ARM9TDMI takes 79% of the cycles ARM7TDMI takes
So ARM9TDMI performance is 127% of ARM7TDMI performance

at the same clock frequency

Dhrystone 2.1 Synthetic Benchmark
Dhrystone 2.1 compiled with the ARM ADS 1.1 compiler which performs code scheduling optimizations to
minimize interlocks.

Information from trace analysis on ARM9TDMI
% of average ARM7TDMI ARM9TDMI

instructions length cycles cycles
Single Loads 17.6% 3 1.24 average including interlocks
Single Stores 10.5% 2 1

LDM 2.3% 3.8 x+2 x
STM 2.0% y+1 y

Overall ARM9TDMI CPI 1.76

So on average 100 instructions on ARM9TDMI take 1.76 * 100 = 176 cycles
For single loads we saved 1.76 cycles x 17.6 instructions = 31.0 cycles
For single stores we saved 1 cycle x 10.5 instructions = 10.5 cycles
For LDMs we saved 2 cycles x 2.3 instructions = 4.6 cycles
For STMs we saved 1 cycle x 2 instructions = 2 cycles

So result is 224.1 cycles in ARM7TDMI
Which is a CPI of 2.241

So ARM9TDMI takes 79% of the cycles ARM7TDMI takes
So ARM9TDMI performance is 127% of ARM7TDMI performance

at the same clock frequency

