
REPTAR: A UNIVERSAL PLATFORM FOR CODESIGN APPLICATIONS

Alberto Dassatti, Olivier Auberson, Romain Bornet, Etienne Messerli, Jérôme Stadelmann and Yann Thoma

Reconfigurable and Embedded Digital Systems Institute - REDS
HEIG-VD // School of Business and Engineering Vaud; HES-SO // University of Applied Sciences Western Switzerland

Route de Cheseaux 1, 1401, Yverdon-les-Bains, Switzerland
phone: + (41) 24 557 61 60, fax: + (41) 24 557 62 64, email: name.surname@heig-vd.ch

web: www.reds.ch

ABSTRACT
Embedded systems are shaping a new world. There is no
sector immune to their adoption and the effects in the long
term are unpredictable and fascinating. Embedded systems
are designed by embedded system engineers. What technical
education and what kind of practical skills these new engi-
neers will need? This is a complex and unanswered ques-
tion. In this paper we describe our proposal to equip engi-
neering students with knowledge and experience: REPTAR.
REPTAR (Reconfigurable Embedded Platform for Training
And Research) is a feature rich complex embedded system
designed for giving the opportunity to tomorrow’s engineers
of having hands-on experience on modern technologies and
learning by doing. As a side effect REPTAR revealed itself as
an invaluable tool for rapid prototyping and research explo-
rations.

1. INTRODUCTION

Back in year 2011, professors at the Reconfigurable and Em-
bedded Digital Systems (REDS) Institute faced critical issues
in the labs they were teaching for different courses (digital
systems design, embedded programming, ...) as the hardware
platforms they were using were either obsolete from a tech-
nological point of view or approaching the end of life and no
longer available from commercial distributors. To tackle this
problem two solutions were envisioned:
1. Replace all development kits used in the different courses

with newer ones from multiple providers
2. Design our own home-grown platform which would ful-

fill the needs of all labs currently given at the institute
After some initial investigations on existing solutions we

took up the challenge and the latter solution was accepted.
This choice gave us full freedom and flexibility on the design
and was also an excellent opportunity for the team of engi-
neers involved in the development process to bring together
all the skills they gathered from multiple research projects
into a single common realization.

Requirements and specifications of the complete plat-
form were identified and formalized. The platform needed
to be very flexible and modular to cope with the variety of
topics we are teaching. Hardware platform design, from
schematics to production, software development and board
bring up took almost a full year. REPTAR was first intro-
duced in labs with students in fall 2012. In this paper we
introduce the interested reader to REPTAR, its software and
hardware components as well as how we exploited it for re-
search in the last years and how we are going to continue in
this direction.

Figure 1: REPTAR System

The rest of the paper is structured as follows. In sec-
tion 2, the REPTAR embedded platform is introduced, sec-
tion 2.1 provides more details about its hardware features and
the challenges in its development. In section 2.2, the different
software environments are described while section 3 reports
about some experiences with the board in two main contexts:
research 3.1 and education 3.2. Finally, a conclusion para-
graph summarizes our findings.

2. EMBEDDED PLATFORM

REPTAR is a universal board for courses in computer ar-
chitecture and embedded processor-based systems. The full
system, visible in Figure 1, combines a Texas Instruments
DM3730 SoC [18] (itself consisting of an ARM Cortex-A8
coupled with a TMS320C64x+ DSP) with a Xilinx Spartan
6 FPGA [23]. The platform also includes a large number
of control, display and communication peripherals. Modular
by design, it offers many possibilities for expansion and us-
age. The main components can work in standalone mode or
coupled, giving the option of developing only on the CPU,
only on the FPGA or combine the two. On the CPU side
more flexibility is granted by many different development
frameworks ranging from bare metal code to single task boot
loader, from minimalist RTOS to fully flagged Linux distri-
bution.

REPTAR is not the only system composed by the com-
bination of a processor and an FPGA, there are many similar

Proceedings of the 6th European Embedded Design in Education and Research, 2014

978-1-4799-6843-5/14/$31.00 ©2014 IEEE 109

commercial and accademics systems (an updated list can be
found in [13]). The most notable among them is the Zynq
Platform [24] from Xilinx. Both systems are composed by
a processor and an FPGA tightly coupled, but there are few
remarkable differences. First of all when the project REP-
TAR started, back in 2011, Zynq was only announced1 and
a comparison was not possible; From the architectural point
of view there are three major differences between the two
platforms:
• Zynq is an ARM dual-core processor equipped with an

FPGA, this implies the CPU has to be programmed in
order to use the FPGA; this is not the case in REPTAR;

• secondly, REPTAR integrates a powerful programmable
DSP core, unavailable on the Zynq (it provides a second
ARM core);

• finally, the coupling between the FPGA fabric and the
processor, as well as the achivable data rate between the
two, is much higher in the Zynq.

These factors made the two systems quite different and very
hard to compare. If we consider the REPTAR system glob-
ally, the comparison is even less significative.

The following two sections provides greater details about
the two sides of the platform, its Hardware and Software
components.

2.1 Hardware Architecture
REPTAR platform is composed by two boards: the CPU
board (with a Davinci DM3730 processor module [20]) and
the FPGA board (equipped with a Spartan 6). The latter is
considered as the main board of the entire system and pro-
vides all the power supplies. The CPU board is considered
as a daughter card. Through this choice, we were able to of-
fer a flexible and evolutive solution with reasonable costs of
redesign and update for each part. Figure 2 presents a func-
tional block diagram of the platform.

The processor module features a Cortex-A8 1GHz with
256MB of DDR2 running at 800MHz and provides a di-
rect support to the Touchscreen (7′′ capacitive) and the SD-
card and USB communication subsystems. Networking in-
terfaces, 100Mbit Ethernet link, a Wifi/Bluetooth module
and a GPS/GSM card are also directly accessed from the
CPU. The FPGA Xilinx Spartan6 XC6SLX150TFGG900-3
offers high-speed Transceivers up to 3GHz usable for SATA
and other high speed protocols, and more than 500 user pro-
grammable IOs (FMC, JTAG, GPIOS). Finally, 4 ADCs and
4 DACs converters give access to the analog world.

One of the key decision in this design was the CPU
choice. Many features of the DM3730 have guided our pref-
erence for this processor. First, it was completely in accor-
dance with our research and teaching needs in regards of its
flexibility and power. We were looking for a processor for
a long term solution, with a powerful ARM processor and
simultaneously, offering the capabilities of specialized com-
putation as digital signal processing. Second, its internal ar-
chitecture allowing to interface an FPGA directly on its main
bus fulfilled exactly the requirements for the REPTAR plat-
form. Finally, the kind of topics covered by our classes re-
quire very detailed knowledge of the CPU architecture: TI
provides accessible, updated and complete documentation
for this processor.

1actual documentation date August 2012.

The PCB (Printed Circuit Board) routing of both boards
with so many components was one of our challenge in terms
of complexity. Respecting both the electrical (analog and
digital) and mechanical constraints, a PCB of 18 layers has
been designed for the FPGA board.

The CPU-FPGA communication, a very important part
of this mix-platform, can be exploited through two protocols.
An asynchronous access allows to easily execute read/writes
to/from FPGA registers. A synchronous protocol (the clock
being supplied by the CPU) allows to manage burst accesses,
the FPGA being seen as a DDR memory. This mode is par-
ticularly useful for applications requiring higher throughput
than simple command registers accesses, as the throughput
can attain a data rate of up to 560Mb/s instead of 100Mb/s
provided by asynchronous transfers. The FPGA reference
design already takes care of these protocols, as well as many
other low level details such as interrupt generation, and pro-
vides a clear and easy to use interface for the integration of a
custom design.

2.2 Software Components
A broad portfolio of software components was developed or
adapted from existing open source projects. These compo-
nents can be classified in different categories, namely:
• Adapted development, test and debugging tools;
• Low-level software: boot loader and OS-less devices ab-

straction layers;
• Operating systems: general purpose and real-time oper-

ating systems;
• User space/applications;

To reduce the burden generally tied to the development
of embedded systems and make REPTAR an easy and quick
to take up platform, a comprehensive framework was set up.
First, a version of the open source Qemu emulator [14] was
adapted to emulate the core CPU as well as many peripher-
als of the CPU board. These adaptations resulted in a new
‘reptar’ machine in Qemu which can easily be started with a
-M reptar command line option. A basic emulation of the
FPGA interface (registers interface) was also added to allow
the emulation of the FPGA features. A graphical companion
front-end in Qt was developed to allow better emulation of
user-facing I/O components. Buttons, switches, LEDs and
the touchscreen are currently supported by this extension.

As for many open source embedded systems, U-Boot
[6] was chosen as default boot loader. Based on the ver-
sion available for the CPU module used on REPTAR a cus-
tomized version was developed. The modifications focused
on support of the FPGA through the local bus of the DM3730
as well as on the integration of an exhaustive test frame-
work based on ITBOK [19] allowing early tests of all hard-
ware functionalities. Complementary to the low-level soft-
ware interfaces provided by U-Boot, a set of standalone tool-
boxes have been developed to allow the development of bare-
metal/OS-less applications. Toolboxes are available for the
basic subsystems of the SoC (system initialization, timer,
UART, GPIO) and for more advanced blocks such as the
LCD screen controller. These components are typically de-
veloped and supported under the Texas Instruments Code
Composer IDE.

To provide the best suited operating system for any re-
search project or students’ lab, several operating systems are
supported on the platform. Currently, Linux is supported as

110

Figure 2: REPTAR block diagram

the reference general purpose operating system. For scenar-
ios where real-time constraints may be required, a Xenomai
patched Linux kernel is also available. Further details on this
are given in section 3.2 . Work is currently undergoing to
further support ChibiOS [2] and RTEMS [12] as real-time
operating systems. These operating systems will be used in
the real-time programming class with the aim of giving the
students a larger view on alternatives usable when the pro-
cessing power is more constrained.

A Linux kernel is of little use without a consistent and
featureful user space. REPTAR supports two kinds of root
file systems: Ubuntu core image augmented with cherry-
picked packages and a Buildroot [1] based rootfs compiled
entirely from sources. The Ubuntu file system offers a stan-
dard graphical desktop environment (LXDE) with applica-
tions for managing user-friendly interactive usage. Pack-
ages installed by default include a graphical network config-
uration tool, a file explorer and audio/video players. Addi-
tional packages can be installed easily using Ubuntu’s pack-
ages management tool, APT. The Buildroot based rootfs of-
fers more flexibility and level of control than Ubuntu. Being
based on known configuration tools (same Kconfig as Linux
kernel) and easily tunable, Buildroot revealed itself as the
ideal build system for our modular platform. A standard
Buildroot configuration is available from our build frame-
work. Students and researchers can easily take over this basic
configuration and tune it by adding applications or libraries
specific to their project. To further broadens the portfolio of
available user space stacks, ports of Android and Tizen [8]
are currently ongoing and will soon be available.

3. APPLICATIONS

As for our initial goal, REPTAR filled the need of a rapid
prototyping platform for our research projects as well as a
feature rich platform for education. In the following we will
report about some projects and courses examples where this
platform proves its value.

3.1 Research

Our research focus is on high performance embedded sys-
tems. In this context the availability of a fast prototyping
platform, rich of interfaces and with a rich set of software
components is definitely a valuable asset. The next sections
will provide an overview of some of our researches demon-
strated on REPTAR.

3.1.1 SOSoC

Nowadays, technology advances in the design of general pur-
pose System on Chip have revolutionized the conception of
embedded systems. Beside of the General Purpose Proces-
sor, we can often find other dedicated processors and co-
processors like, in the case of the REPTAR platform, a DSP
and a NEON Single Instruction Multiple Data co-processor.
The SOSoC project allows the application developer to use
those different calculation capabilities in a simple and trans-
parent way, even with minimal knowledge about the hard-
ware.

For this project, a framework supplying optimized func-
tions for specific targets has been developed. It does not
only provides specific algorithms, but also adds an abstrac-
tion layer between the user application and the hardware spe-
cific functions. In the facts, the application is only coded and
compiled once, without even worrying about the hardware
modules available. The SOSoC framework allows then to
dynamically execute its functions on the most adapted pro-
cessing unit. This could be achieved by the library dynami-
cally monitoring all the different function calls with their as-
sociated parameters; consulting this information the system
can select the most promising solution in every situation and
adapt the dispatching strategy to variable loads. This frame-
work has been thought to be easily expandable, by adding
new optimized functions, or new processing units, or even
to be ported on another hardware. Figure 3 shows the ar-
chitecture of SOSoC. It is divided into several libraries, one
generic containing the general dispatching framework, and a
specific library for each computation unit supported. We can
also see that the communication with the DSP is done using
the SysLink [17] capabilities. For the interested reader, more
information on the SOSoC project can be found in [11].

In this context, REPTAR played the real-time demonstra-
tor of our approach. The demo software applies different fil-
ters on a video stream and then displays the processed output
on the embedded screen. At the launch of the application, all
calculations are made on the ARM processor alone, without
any other optimization than the compiler’s ones. Then, the
performances can easily be enhanced by joining the NEON
co-processor capabilities to the GPP or even by adding the
DSP. All this can be done at run-time, automatically or in-
structed by the user.

3.1.2 EmbeddedXen

Virtualization is a technique that has been used for many
years in the field of large IT systems and high-reliability

111

Figure 3: SOSoC architecture diagram

servers. By isolating run-time environments from each others
and from hardware resources, virtualized environments pro-
vide a high level of security, reliability and flexibility. Em-
beddedXen, a virtualization framework for embedded sys-
tems based on the well-known Xen project [9], is the result of
several years of research in the field of virtualization tailored
to embedded systems. Being developed for ARM architec-
tures only, EmbeddedXen was a framework of choice to port
on REPTAR. EmbeddedXen is currently supported on REP-
TAR with two guest domains: A privileged domain (dom0)
and a non-privileged domain (domU) share the hardware re-
sources exposed by the platform. This flexible infrastruc-
ture allows exploration and research in the fields of security,
heterogeneous platforms support and innovative hardware-
software interactions. Projects using EmbeddedXen are cur-
rently ongoing to develop new architectures for smart energy
management and secure mobile environments. The inter-
ested reader will find more details on EmbeddedXen archi-
tecture in [4] and at EmbeddedXen project’s page on Source-
Forge [5].

3.2 Education

REPTAR proved to be a versatile and practical instrument
in many courses. The topics that can be experimented
on the board range from DSP programming to FPGA de-
sign, from HW-SW partitioning to Operating Systems, from
Multi-Processor systems to real-time signal processing. In
the three following examples we describe how we used REP-
TAR to improve our educational offer. They are a small sub-
set of the classes using REPTAR. For a more complete and
up to date list please refers to [15]. On the same site all con-
tacts details are given if you need more information or you
are interested in using REPTAR in your class or project.

3.2.1 Real-time programming

Real-time programming is an extremely challenging field in
computer science. Students have often difficulties to fig-
ure out how the theoretical concept maps to physical sys-
tems; Complexity of modern microprocessor based systems
increase the complexity of the topic and makes practical ex-
perience quite limited. The introduction of laboratories based
on REPTAR redesigned the scenario. REPTAR and its com-
bination of microprocessor and FPGA gives the opportunity
of comparing the different granularities in time mastering
as well as the possibility of interfacing easily with the real
world. In order to set up this labs we provided some basic

setup for the students to experiment with. The first one is
based on standard Linux kernel, the second on the RT patch
set [3] and the third on Xenomai [22]. Following a set of
exercises, students walk through the details of the different
implementations and measure the real-time performance ac-
quiring hands-on experience. In the last part of the class the
students are often confronted with a complex real-time prob-
lem where they are asked to perform a multi task elaboration
of signals coming from external components connected to the
board (usually using the ADC and DAC accessed through a
RTDM driver [21]). REPTAR is in this case a major motiva-
tion factor and stimulus to acquire in-depth knowledge of the
topic.

3.2.2 REPBOT

REPBOT - contraction of REPTAR and robot - is a robotic
platform developed by students in the frame of the Embed-
ded Systems Design course, a third year course for students
in Computer Engineering. Based on a REPTAR board and
a commercial robot’s chassis, students developed a complete
robotic platform. In teams of four or five students the goal
was to design and implement an embedded system capable
of driving an autonomous robot. Apart from the base build-
ing blocks, no constraint was specified and students could
organize their work as they wanted to reach the final goal.
From mechanical engineering to hardware extensions design
or low-level programming for the CPU or the FPGA to con-
trol actuators and sensors, the team splitted the work in dif-
ferent work packages, each student being responsible of one
or several of them. The concrete application of concepts and
techniques learned in various courses was a real motivation
for the students who developed two different functional plat-
forms. With these highly valuable results, they presented
their robot at the Swiss Informatics Competition 2013 and
were awarded the third place for their realization [16].

3.2.3 Mandelbrot set calculator

The REPTAR platform can be exploited for co-design
projects, notably to develop hardware accelerators. In that
context, a Mandelbrot set calculator (written in VHDL) has
been developed. A Mandelbrot set [10] is a 2-D drawing
representing the complex plane on which each pixel corre-
sponds to a complex number of the plane. For each pixel, the
function Zn+1 = Z2

n +C is recursively applied, C being the
pixel coordinate, Z0 being 0. If the series diverges, the pixel
is considered to be outside of the Mandelbrot set, else it is
inside. This process requires to fix the maximum number of
iterations to be performed to approximate the real set, and
obviously, parallel processing can be applied, as every pixel
is independent of the others.

A C++/Qt application has been developed and allows to
display the Mandelbrot set on the REPTAR touchscreen, ex-
ploiting floating points or fixed number arithmetic (32, 16,
or 8 bits). From this, an FPGA calculator has been designed.
The software only sends to the FPGA the information con-
cerning the bottom-left point, the number of pixels on the
two axes and the pixel size. The FPGA design then has to
perform the calculation and returns, for each pixel, the num-
ber of iterations reached as well as the last Zn. These data
are then used to display the graphical Mandelbrot set on the
REPTAR screen. This co-design application is interesting in
the sense that it shows a limited data transfer from the CPU to

112

the FPGA (5 words), and a big one in the opposite direction
(3×Sx×Sy words, where Sx and Sy represent the size of the
image) . The software code can be totally agnostic relative to
the FPGA design implementation, that can be purely sequen-
tial or totally pipelined. Therefore it allows for any kind of
implementation on the hardware part. It would also be pos-
sible to let students rewrite the software drivers responsible
for accessing the Mandelbrot accelerator.

Finally, we can notice that this application can easily be
adapted to any ”iteration based” mathematical curves like Ju-
lia Sets, or the Newton fractal [7]. This application, being the
first hardware accelerator will be followed by others, letting
students embed code on a real FPGA with display possibili-
ties offered by the REPTAR touchscreen.

4. CONCLUSION

Embedded systems teaching, being on the software or hard-
ware side, requires the students to put their hands on real
hardware, not only simulators. In that context, REPTAR is
the perfect platform for a rich set of courses, allowing the stu-
dents to play with the same hardware through many courses.
Its usefulness is already demonstrated, and new labs are de-
veloped every semester. Its complexity is such that many
peripherals are embedded on board, and that it avoids the use
of different boards for each course.

On the research side, this platform already showed an ex-
cellent potential, as explained in this paper. The full under-
standing of the hardware and the software (both low and high
level) allows the REDS institute to easily start new projects
on REPTAR, or to use it as a demonstrator for specific appli-
cations.

Finally, the REDS institute is definitely open to collabo-
rations regarding the development of the board itself or the
applications. The Gerber files can be asked so that another
institution could directly build new boards without further
development, or collaborations can be envisioned to enhance
the board.

5. ACKNOWLEDGMENTS

The authors would like to thank the HEIG-VD for the fi-
nancial support that allowed the realization of the REPTAR
board and all its surrounding development. Their gratitude
also goes to all those who participated directly or indirectly
to the realization of this platform.

REFERENCES
[1] Buildroot. Buildroot making embedded linux easy.

http://buildroot.uclibc.org/.
[2] ChibiOS. Chibios/rt. http://www.chibios.

org/dokuwiki/doku.php.
[3] CONFIG PREEMPT RT community. Real-time

linux wiki. https://rt.wiki.kernel.org/
index.php/Main_Page.

[4] D. Rossier. EmbeddedXEN: A revisited architecture of
the XEN hypervisor to support ARMbased embedded
virtualization. Technical report. http://upload.
wikimedia.org/wikipedia/commons/5/
58/EmbeddedXEN_publication_final.pdf.

[5] D. Rossier. EmbeddedXEN virtualization frame-
work. http://sourceforge.net/projects/
embeddedxen/.

[6] denx. Das u-boot – the universal boot loader. http:
//www.denx.de/wiki/U-Boot.

[7] B. Epureanu and H. Greenside. Fractal basins of attrac-
tion associated with a damped newton’s method. SIAM
Review, 40(1):102–109, 1998.

[8] Linux Foundation . The os of everything. https:
//www.tizen.org/.

[9] Linux Foundation. The xen project, the powerful open
source industry standard for virtualization. http://
www.xenproject.org/.

[10] B. Mandelbrot. Fractals: form, change and dimension.
W.H. Freeman, 1977.

[11] O. Nasrallah, W. Luithardt, D. Rossier, A. Dassatti,
J. Stadelmann, X. Blanc, N. Pazos, F. Sauser, and
S. Monnerat. Sosoc, a linux framework for system op-
timization using system on chip. In SOC Conference
(SOCC), 2013 IEEE 26th International, pages 284,289.
IEEE, 2013.

[12] OAR Corporation. Real-time executive for multipro-
cessor systems. http://www.rtems.org/.

[13] Philip Freidin. Fpga boards and systems. http://
www.fpga-faq.com/FPGA_Boards.shtml.

[14] QEMU. Qemu. http://wiki.qemu.org/Main_
Page.

[15] REDS. Formations. http://reds.heig-vd.ch/
formations.

[16] SI. Wettbewerb sic (swiss informatics com-
petition) 2013. http://www.s-i.ch/
veranstaltungen/wettbewerb-sic-2013/.

[17] Texas Instruments. http://processors.wiki.
ti.com/index.php/Category:SysLink.

[18] Texas Instruments. Dm3730 digital media processors
(rev. d). Technical report. http://www.ti.com/
product/dm3730.

[19] Texas Instruments. Itbok. http://processors.
wiki.ti.com/index.php/ITBOK.

[20] Variscite. Var-som-om37 cpu : Ti am3703 / dm3730.
http://www.variscite.com/products/
system-on-module-som/cortex-a8/
var-som-om37-cpu-ti-am3703-dm3730.

[21] Xenomai. Real-time driver model. https://rt.
wiki.kernel.org/index.php/Main_Page.

[22] Xenomai. Xenomai: Real-time framework for linux.
http://www.xenomai.org/.

[23] Xilinx. Spartan-6 fpga product brief. Technical
report. http://www.xilinx.com/products/
silicon-devices/fpga/spartan-6/.

[24] Xilinx. Zynq-7000 all programmable soc.
http://www.xilinx.com/products/
silicon-devices/soc/zynq-7000/.

113

